
Interrupted Time Series

Let’s create some data.

Here’s a positive relationship.
j = 50

a = data.frame(x=1:100, y=jitter(1:100, j))
plot(a)
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Here’s a negative relationship.
b = data.frame(x=101:200, y=jitter(100:1, j))
bb = data.frame(x=101:200, y=jitter(seq(50,0.5,-0.5), 100))
plot(bb)
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Are these any different?
boxplot(list(before=a$y,after=bb$y))
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t.test(a$y,b$y)

##
## Welch Two Sample t-test
##
## data: a$y and b$y
## t = 0.18863, df = 197.99, p-value = 0.8506
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.417748 8.986885
## sample estimates:
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## mean of x mean of y
## 51.56097 50.77640

Let’s display them side by side.
plot(x=1:200, y=rep(1,200), type="n", ylim=c(0,100),

xlab="time", ylab="y")
abline(v=100)
points(a$x, a$y, pch=2, col=2)
points(bb$x, bb$y, pch=3, col=4)

abline(lm(y~x, data=a), col=2)
lines(x=1:100, y=lm(y~x, data=a)$fit, col=2)
# abline(lm(y~x, data=bb), col=4)
lines(x=101:200, y=lm(y~x, data=bb)$fit, col=4)
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Let’s simulate a change in level.
a2 = data.frame(x=101:200, y=jitter(1:100, j))

plot(x=1:200, y=rep(1,200), type="n", ylim=c(-50,150),
xlab="time", ylab="y")

abline(v=100)
points(a$x, a$y, pch=2, col=2)
points(a2$x, a2$y, pch=3, col=4)

abline(lm(y~x, data=a), col=2)
abline(lm(y~x, data=a2), col=4)

3



0 50 100 150 200

−
50

0
50

10
0

15
0

time

y

We can’t capture that with a simple test.
boxplot(list(before=a$y,after=a2$y))
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t.test(a$y,a2$y)

##
## Welch Two Sample t-test
##
## data: a$y and a2$y
## t = 0.062368, df = 197.93, p-value = 0.9503
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.992779 8.514855
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## sample estimates:
## mean of x mean of y
## 51.56097 51.29993

Now let’s go back to the previous example:
m = rbind(a, data.frame(x=101:200, y=jitter(seq(50,0.5,-0.5), j)))
plot(m$x, m$y, xlab="time", ylab="y")
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Here’s what a simple model might look like:
summary(lm(y~x, data=m))

##
## Call:
## lm(formula = y ~ x, data = m)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.846 -17.459 -1.771 11.772 66.756
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52.17421 3.62637 14.387 < 2e-16 ***
## x -0.13715 0.03129 -4.383 1.89e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.55 on 198 degrees of freedom
## Multiple R-squared: 0.08846, Adjusted R-squared: 0.08385
## F-statistic: 19.21 on 1 and 198 DF, p-value: 1.895e-05

Let’s see if we can model those trends and change in level explicitly.
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m$time = m$x
m$intervention = m$time > 100
m$time_after_intervention = ifelse(m$time > 100, m$time - 100, 0)

m$time

## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
## [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
## [199] 199 200
m$intervention

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [97] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [109] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
m$time_after_intervention

## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [19] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [37] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [55] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [73] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [91] 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7 8
## [109] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## [127] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## [145] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
## [163] 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## [181] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
## [199] 99 100
rdd = lm(y ~ time + intervention + time_after_intervention, data=m)
summary(rdd)
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##
## Call:
## lm(formula = y ~ time + intervention + time_after_intervention,
## data = m)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.1442 -2.9659 0.2115 3.4002 9.3657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.67710 0.97135 1.727 0.0858 .
## time 0.98780 0.01670 59.153 <2e-16 ***
## interventionTRUE -49.75945 1.36350 -36.494 <2e-16 ***
## time_after_intervention -1.49229 0.02362 -63.190 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.82 on 196 degrees of freedom
## Multiple R-squared: 0.9679, Adjusted R-squared: 0.9674
## F-statistic: 1968 on 3 and 196 DF, p-value: < 2.2e-16

Q: Can you achieve the same result (i.e., capture both trends and the change in level) with only two variables?
A: Yes, with an interaction term!
rdd2 = lm(y ~ time * intervention, data=m)
summary(rdd2)

##
## Call:
## lm(formula = y ~ time * intervention, data = m)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.1442 -2.9659 0.2115 3.4002 9.3657
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.67710 0.97135 1.727 0.0858 .
## time 0.98780 0.01670 59.153 <2e-16 ***
## interventionTRUE 99.46970 2.73716 36.340 <2e-16 ***
## time:interventionTRUE -1.49229 0.02362 -63.190 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.82 on 196 degrees of freedom
## Multiple R-squared: 0.9679, Adjusted R-squared: 0.9674
## F-statistic: 1968 on 3 and 196 DF, p-value: < 2.2e-16

Now let’s add a control series.
a2 = a
names(a2) = c("x","yt")
df = rbind(a2, data.frame(x=101:200, yt=jitter(seq(50,0.5,-0.5), j)))
df$yc = jitter(50) + df$yt
df[df$x>=100,]$yc = jitter(seq(150,125,-0.25), 4*j)
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{
plot(df$x, type="n", xlab="time", ylab="y")
points(df$x, df$yt)
points(df$x, df$yc, col = "red", pch=2)
legend(1, 195, legend=c("Treatment", "Control"),

col=c("black", "red"), pch=c(21,2))
abline(v=100)

}
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And set up the ITS variables.
dfm = data.frame(time = df$x, y = c(df[c("x","yt")]$yt,df[c("x","yc")]$yc))

dfm$group = c(rep("treated",200), rep("control",200))
dfm$intervention = dfm$time > 100
dfm$time_after_intervention = ifelse(dfm$time > 100, dfm$time - 100, 0)

rdd2c = lm(y ~ time
+ intervention
+ time_after_intervention
+ group
+ group:time
+ group:intervention
+ group:time_after_intervention
, data=dfm)

summary(rdd2c)

##
## Call:
## lm(formula = y ~ time + intervention + time_after_intervention +
## group + group:time + group:intervention + group:time_after_intervention,
## data = dfm)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -11.1442 -3.7472 -0.1694 4.4578 9.9158
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 51.481653 1.122071 45.881 < 2e-16 ***
## time 0.992247 0.019290 51.438 < 2e-16 ***
## interventionTRUE -0.638389 1.575079 -0.405 0.685
## time_after_intervention -1.243818 0.027280 -45.594 < 2e-16 ***
## grouptreated -49.804550 1.586847 -31.386 < 2e-16 ***
## time:grouptreated -0.004448 0.027280 -0.163 0.871
## interventionTRUE:grouptreated -49.764833 2.227498 -22.341 < 2e-16 ***
## time_after_intervention:grouptreated -0.253254 0.038580 -6.564 1.66e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.568 on 392 degrees of freedom
## Multiple R-squared: 0.9874, Adjusted R-squared: 0.9872
## F-statistic: 4404 on 7 and 392 DF, p-value: < 2.2e-16

Is there autocorrelation?
simple_ts = lm(y ~ time, data=m)
plot(resid(simple_ts))
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# alternatively
acf(resid(simple_ts))
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To formally test for autocorrelation, we can use the Durbin-Watson test
library(lmtest)

## Warning: package 'lmtest' was built under R version 4.4.1

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(m$y ~ m$time)

##
## Durbin-Watson test
##
## data: m$y ~ m$time
## DW = 0.098841, p-value < 2.2e-16
## alternative hypothesis: true autocorrelation is greater than 0

From the p-value, we know that there is autocorrelation in the time series

A solution to this problem could be to use more advanced time series analysis (e.g., ARIMA) to adjust for
seasonality and other dependency, or to use mixed-effects models when modeling multiple individual “treated”
time series jointly.
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