Interrupted Time Series

Let’s create some data.
Here’s a positive relationship.

j = 50

a = data.frame(x=1:100, y=jitter(1:100, j))
plot(a)
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Here’s a negative relationship.

b = data.frame(x=101:200, y=jitter(100:1, j))

bb = data.frame(x=101:200, y=jitter(seq(50,0.5,-0.5), 100))
plot (bb)
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Are these any different?
boxplot(list(before=a$y,after=bb$y))
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t.test (a$y,b$y)

##

## Welch Two Sample t-test

##

## data: a$y and b$y

## t = 0.18863, df = 197.99, p-value = 0.8506

## alternative hypothesis: true difference in means is not equal to O
## 95 percent confidence interval:

## -7.417748 8.986885

## sample estimates:



## mean of x mean of y
## 51.56097 50.77640

Let’s display them side by side.

plot(x=1:200, y=rep(1,200), type="n", ylim=c(0,100),
xlab="time", ylab="y")

abline (v=100)

points(a$x, a$y, pch=2, col=2)

points(bb$x, bb$y, pch=3, col=4)

abline(lm(y~x, data=a), col=2)

lines(x=1:100, y=lm(y~x, data=a)$fit, col=2)

# abline(lm(y~xz, data=bb), col=4)
lines(x=101:200, y=1lm(y~x, data=bb)$fit, col=4)
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Let’s simulate a change in level.

a2 = data.frame(x=101:200, y=jitter(1:100, j))

plot(x=1:200, y=rep(1,200), type="n", ylim=c(-50,150),
xlab="time", ylab="y")

abline (v=100)

points(a$x, a$y, pch=2, col=2)

points(a2$x, a28y, pch=3, col=4)

abline(lm(y~x, data=a), col=2)
abline(1lm(y~x, data=a2), col=4)
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We can’t capture that with a simple test.

boxplot(list(before=a$y,after=a2$y))
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before after
t.test (a$y,a2%y)
##
## Welch Two Sample t-test
##

## data: a$y and a2%y

## t = 0.062368, df = 197.93, p-value = 0.9503

## alternative hypothesis: true difference in means is not equal to O
## 95 percent confidence interval:

## -7.992779 8.514855



##
##
##

sample estimates:
mean of x mean of y
51.56097 51.29993

Now let’s go back to the previous example:

rbind(a, data.frame(x=101:200, y=jitter(seq(50,0.5,-0.5), j)))
plot(m$x, m$y, xlab="time", ylab="y")
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Here’s what a simple model might look like:
summary (Im(y~x, data=m))
##
## Call:
## 1m(formula = y ~ x, data = m)
##
## Residuals:
## Min 1Q Median 3Q Max
## -55.846 -17.459 -1.771 11.772 66.756
##
## Coefficients:
#it Estimate Std. Error t value Pr(>[tl)
## (Intercept) 52.17421 3.62637 14.387 < 2e-16 **x
## x -0.13715 0.03129 -4.383 1.89e-05 *x*x
#H# ——-
## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 25.55 on 198 degrees of freedom
## Multiple R-squared: 0.08846, Adjusted R-squared: 0.08385

##

F-statistic: 19.21 on 1 and 198 DF,

p-value: 1.895e-05

Let’s see if we can model those trends and change in level explicitly.




m$time

m$x

m$intervention =
m$time_after_intervention

m$time

##
##
##
##
##
##
##
##
##
##
##
##

[1]
[19]
[37]
[55]
[73]
[91]

[109]
[127]
[145]
[163]
[181]
[199]

1
19
37
55
73
91

109
127
145
163
181
199
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20
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92
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182
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m$intervention

##
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##

[1]
[13]
[25]
[37]
[49]
[611]
[73]
[85]
(971

[109]
[121]
[133]
[145]
[157]
[169]
[181]
[193]

FALSE F
FALSE F
FALSE F
FALSE F
FALSE F
FALSE F
FALSE F
FALSE F
FALSE F
TRUE
TRUE
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TRUE
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TRUE
TRUE

m$time > 100
ifelse(m$time > 100, m$time - 100, 0)
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m$time_after_intervention

##  [1] 0
## [19] 0
## [37] O
## [565] 0
## [73] 0
##  [91] 0
## [109] 9
## [127] 27
## [145] 45
## [163] 63
## [181] 81
## [199] 99
rdd = Im(y ~
summary (rdd)
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time + intervention + time_after_intervention, data=m)
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##

## Call:

## lm(formula = y ~ time + intervention + time_after_intervention,
#it data = m)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.1442 -2.9659 0.2115 3.4002 9.3657

##

## Coefficients:

## Estimate Std. Error t value Pr(>Itl)

## (Intercept) 1.67710 0.97135 1.727 0.0858 .
## time 0.98780 0.01670 59.153 <2e-16 **x*
## interventionTRUE -49.75945 1.36350 -36.494 <2e-16 **x*

## time_after_intervention -1.49229 0.02362 -63.190 <2e-16 *%*x*
##H ——-

## Signif. codes: O '**x' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.82 on 196 degrees of freedom

## Multiple R-squared: 0.9679, Adjusted R-squared: 0.9674

## F-statistic: 1968 on 3 and 196 DF, p-value: < 2.2e-16

Q: Can you achieve the same result (i.e., capture both trends and the change in level) with only two variables?
A: Yes, with an interaction term!

rdd2 = Im(y ~ time * intervention, data=m)
summary (rdd2)

##

## Call:

## lm(formula = y ~ time * intervention, data = m)

##

## Residuals:

## Min 1Q Median 3Q Max

## -11.1442 -2.9659 0.2115 3.4002 9.3657

##

## Coefficients:

#it Estimate Std. Error t value Pr(>[t])

## (Intercept) 1.67710 0.97135 1.727 0.0858 .
## time 0.98780 0.01670 ©59.153 <2e-16 ***
## interventionTRUE 99.46970 2.73716 36.340 <2e-16 *xx*x
## time:interventionTRUE -1.49229 0.02362 -63.190 <2e-16 *x*x*
##H -

## Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
##

## Residual standard error: 4.82 on 196 degrees of freedom

## Multiple R-squared: 0.9679, Adjusted R-squared: 0.9674

## F-statistic: 1968 on 3 and 196 DF, p-value: < 2.2e-16

Now let’s add a control series.

a2 = a

names(a2) = c("x","yt")

df = rbind(a2, data.frame(x=101:200, yt=jitter(seq(50,0.5,-0.5), j)))
df$yc = jitter(50) + df$yt

df [df$x>=100,]$yc = jitter(seq(150,125,-0.25), 4%*j)



plot(df$x, type="n", xlab="time", ylab="y")

points(df$x, df$yt)

points(df$x, df$yc, col = "red", pch=2)

legend(1, 195, legend=c("Treatment", "Control"),
col=c("black", "red"), pch=c(21,2))

abline(v=100)
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And set up the ITS variables.
dfm = data.frame(time = df$x, y = c(df[c("x","yt")]1$yt,df [c("x","yc")I$yc))

dfm$group = c(rep("treated",200), rep("control",200))
dfm$intervention = dfm$time > 100
dfm$time_after_intervention = ifelse(dfm$time > 100, dfm$time - 100, 0)

rdd2c = lm(y ~ time
+ intervention

+ time_after_intervention
+ group
+ group:time
+ group:intervention
+ group:time_after_intervention
, data=dfm)
summary (rdd2c)
#it
## Call:
## 1m(formula = y ~ time + intervention + time_after_intervention +
## group + group:time + group:intervention + group:time_after_intervention,
#it data = dfm)
#i#t



##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Residuals:

Min 1Q Median 3Q
-11.1442 -3.7472 -0.1694  4.4578
Coefficients:

(Intercept)

time

interventionTRUE
time_after_intervention
grouptreated
time:grouptreated

interventionTRUE:grouptreated
time_after_intervention:grouptreated

Signif. codes: O '**x' 0.001 '*x' O

Max

9.9158

Estimate Std.
.481653
.992247
.638389
.243818
.804550
.004448
.764833

-0.

.01 !

253254

ONOFHr OFr OR

*' 0.05 '.

Error t value Pr(>lt|)

.122071
.019290
.575079
.027280
.586847
.027280
.227498
.038580

'0.1"

Residual standard error: 5.568 on 392 degrees of freedom

Multiple R-squared: 0.9874, Adjusted R-squared:

F-statistic: 4404 on 7 and 392 DF,

Is there autocorrelation?

simple_ts = lm(y ~ time, data=m)
plot(resid(simple_ts))

resid(simple_ts)
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# alternatively
acf(resid(simple_ts))




Series resid(simple_ts)
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To formally test for autocorrelation, we can use the Durbin-Watson test

library(lmtest)

## Warning: package 'lmtest' was built under R version 4.4.1
## Loading required package: zoo

##
## Attaching package: 'zoo

## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric

dwtest (m$y ~ m$time)

##

## Durbin-Watson test

#i#

## data: m$y ~ m$time

## DW = 0.098841, p-value < 2.2e-16

## alternative hypothesis: true autocorrelation is greater than O

From the p-value, we know that there is autocorrelation in the time series

A solution to this problem could be to use more advanced time series analysis (e.g., ARIMA) to adjust for
seasonality and other dependency, or to use mixed-effects models when modeling multiple individual “treated”
time series jointly.
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