### 17-803 Empirical Methods Bogdan Vasilescu, S3D

Thursday, October 13, 2022







### Readings

Claes Wohlin - Per Runeson Martin Höst - Magnus C. Ohlsson Björn Regnell - Anders Wesslén

Experimentation in Software Engineering

2 Springer

#### Ch 10 (Analysis and interpretation)



Ch 1 (Experiments and causality) Ch 2 & 3 (Validity) Ch 8 (Randomized experiments)

Carnegie Mellon University



Guide to Advanced **Empirical Software** Engineering

€ Springer



#### Ch 6 (Statistical methods and measurement)

Ch 5 (Effect sizes and power analysis) Ch 13 (Fair statistical communication) Ch 14 (Improving statistical practice)

Ch 5 (Designing HCI Exp.) Ch 6 (Hypothesis testing)

[17-803] Empirical Methods, Fall 2022



Ch 3 (Experimental design) Ch 4 (Statistical analysis)



# Order effects, counterbalancing, and latin squares

The most common method of compensating for an order effect is to divide participants into groups and administer the conditions in a different order for each group. The compensatory ordering of test conditions to offset practice effects is called counterbalancing.

### Example

- In the simplest case of a factor with two levels, say, A and B, participants are divided into two groups.
- If there are 12 participants overall, then Group 1 has 6 participants and Group 2 has 6 participants.
- Group 1 is tested first on condition A, then on condition B. Group 2 is given the test conditions in the reverse order.



2 x 2 Latin square





## Latin Squares: (a) $2 \times 2$ . (b) $3 \times 3$ . (c) $4 \times 4$ . (d) $5 \times 5$



#### FIGURE 5.7

Latin squares: (a)  $2 \times 2$ . (b)  $3 \times 3$ . (c)  $4 \times 4$ . (d)  $5 \times 5$ .



[17-803] Empirical Methods, Fall 2022



5

### Example

- An experimenter seeks to determine if three editing methods (A, B, C) differ in the time required for common editing tasks.
  - Method A: arrow keys, backspace, type
  - Method B: search and replace dialog
  - Method C: point and double click with the mouse, type
- Twelve participants are recruited. To counterbalance for learning effects, participants are divided into three groups with the tasks administered according to a Latin square.
- Each participant does the task five times with one editing method, then again with the second editing method, then again with the third.

| Α | В | С |
|---|---|---|
| В | С | Α |
| С | Α | В |



6

| Dorticipont | Tes   | st Condit | ion   | Group Moon S |      | 20   |
|-------------|-------|-----------|-------|--------------|------|------|
| Fanicipani  | A     | В         | С     | Group        | Wean | 30   |
| 1           | 12.98 | 16.91     | 12.19 |              |      |      |
| 2           | 14.84 | 16.03     | 14.01 | 1            | 14.7 | 1.84 |
| 3           | 16.74 | 15.15     | 15.19 | A B C        |      |      |
| 4           | 16.59 | 14.43     | 11.12 |              | •    |      |
| 5           | 18.37 | 13.16     | 10.72 |              |      |      |
| 6           | 15.17 | 13.09     | 12.83 | 2            | 14.6 | 2.46 |
| 7           | 14.68 | 17.66     | 15.26 | BCA          | 1    |      |
| 8           | 16.01 | 17.04     | 11.14 |              | 4    |      |
| 9           | 14.83 | 12.89     | 14.37 |              |      |      |
| 10          | 14.37 | 13.98     | 12.91 | 2            | 111  | 1 00 |
| 11          | 14.40 | 19.12     | 11.59 |              | 14.4 | 1.00 |
| 12          | 13.70 | 16.17     | 14.31 | CAB          |      |      |
| Mean        | 15.2  | 15.5      | 13.0  |              |      |      |
| SD          | 1.48  | 2.01      | 1.63  |              |      |      |

#### FIGURE 5.9

Hypothetical data for an experiment with one within-subjects factor having three levels (A, B, C). Values are the mean task completion time(s) for five repetitions of an editing task.



|                | Dortioinant   | Tes   | st Condit | ion   | Croup | Maan    | 20   |
|----------------|---------------|-------|-----------|-------|-------|---------|------|
|                | Fantcipant    | А     | В         | С     | Group | mean    | 30   |
|                | 1             | 12.98 | 16.91     | 12.19 |       |         |      |
| Mean = 15.     | 29 2          | 14.84 | 16.03     | 14.01 | 1     | 14.7    | 1.84 |
|                | 3             | 16.74 | 15.15     | 15.19 | A B C |         |      |
|                | 4             | 16.59 | 14.43     | 11.12 |       | •       |      |
|                | 5             | 18.37 | 13.16     | 10.72 |       |         |      |
|                | 6             | 15.17 | 13.09     | 12.83 | 2     | 14.6    | 2.46 |
|                | 7             | 14.68 | 17.66     | 15.26 | BCA   | 1       |      |
|                | 8             | 16.01 | 17.04     | 11.14 |       | •       |      |
|                | 9             | 14.83 | 12.89     | 14.37 |       |         |      |
| $M_{000} - 1/$ | 2 2 10        | 14.37 | 13.98     | 12.91 | 2     | 14.4    | 1 88 |
|                | <b>•••</b> 11 | 14.40 | 19.12     | 11.59 |       | 1 1 1 1 | 1.00 |
|                | 12            | 13.70 | 16.17     | 14.31 | CAB   |         |      |
|                | Mean          | 15.2  | 15.5      | 13.0  |       |         |      |
|                | SD            | 1.48  | 2.01      | 1.63  |       |         |      |

#### FIGURE 5.9

Hypothetical data for an experiment with one within-subjects factor having three levels (A, B, C). Values are the mean task completion time(s) for five repetitions of an editing task.

#### Learning?



|            | Dortioinant  | Tes   | st Condit | ion   | Croup | Maan | 20   |
|------------|--------------|-------|-----------|-------|-------|------|------|
|            | Participant  | А     | В         | С     | Group | Mean | 30   |
|            | 1            | 12.98 | 16.91     | 12.19 |       |      |      |
| Mean = 15  | <b>.29</b> 2 | 14.84 | 16.03     | 14.01 | 1     | 14.7 | 1.84 |
|            | 3            | 16.74 | 15.15     | 15.19 | A B C |      |      |
|            | 4            | 16.59 | 14.43     | 11.12 |       | •    |      |
|            | 5            | 18.37 | 13.16     | 10.72 |       |      |      |
|            | 6            | 15.17 | 13.09     | 12.83 | 2     | 14.6 | 2.46 |
| Mean = 16. | .06 7        | 14.68 | 17.66     | 15.26 | BCA   |      |      |
|            | 8            | 16.01 | 17.04     | 11.14 |       |      |      |
|            | 9            | 14.83 | 12.89     | 14.37 |       |      |      |
|            | 10           | 14.37 | 13.98     | 12.91 | 2     | 111  | 1 88 |
|            | 11           | 14.40 | 19.12     | 11.59 |       | 14.4 | 1.00 |
|            | 12           | 13.70 | 16.17     | 14.31 |       |      |      |
|            | Mean         | 15.2  | 15.5      | 13.0  |       |      |      |
|            | SD           | 1.48  | 2.01      | 1.63  |       |      |      |

#### FIGURE 5.9

Hypothetical data for an experiment with one within-subjects factor having three levels (A, B, C). Values are the mean task completion time(s) for five repetitions of an editing task.

#### Fatigue?



| Dorticipont | Tes   | st Condit | ion   | Group | Group Moon |      |
|-------------|-------|-----------|-------|-------|------------|------|
| Fantcipant  | A     | В         | С     | Gloup | Wean       | 30   |
| 1           | 12.98 | 16.91     | 12.19 |       |            |      |
| 2           | 14.84 | 16.03     | 14.01 | 1     | 14.7       | 1.84 |
| 3           | 16.74 | 15.15     | 15.19 | A B C |            |      |
| 4           | 16.59 | 14.43     | 11.12 |       |            |      |
| 5           | 18.37 | 13.16     | 10.72 |       |            |      |
| 6           | 15.17 | 13.09     | 12.83 | 2     | 14.6       | 2.46 |
| 7           | 14.68 | 17.66     | 15.26 | BCA   |            |      |
| 8           | 16.01 | 17.04     | 11.14 |       |            |      |
| 9           | 14.83 | 12.89     | 14.37 |       |            |      |
| 10          | 14.37 | 13.98     | 12.91 | 2     | 111        | 1 00 |
| 11          | 14.40 | 19.12     | 11.59 |       | 14.4       | 1.00 |
| 12          | 13.70 | 16.17     | 14.31 | CAB   |            |      |
| Mean        | 15.2  | 15.5      | 13.0  |       |            |      |
| SD          | 1.48  | 2.01      | 1.63  |       |            |      |

#### FIGURE 5.9

Hypothetical data for an experiment with one within-subjects factor having three levels (A, B, C). Values are the mean task completion time(s) for five repetitions of an editing task.

#### Counterbalancing worked!



| Dortioinant | Tes   | st Con            |
|-------------|-------|-------------------|
| Fanicipan   | А     | В                 |
| 1           | 12.98 | 16.9 <sup>°</sup> |
| 2           | 14.84 | 16.0              |
| 3           | 16.74 | 15.1              |
| 4           | 16.59 | 14.4              |
| 5           | 18.37 | 13.1              |
| 6           | 15.17 | 13.09             |
| 7           | 14.68 | 17.6              |
| 8           | 16.01 | 17.04             |
| 9           | 14.83 | 12.8              |
| 10          | 14.37 | 13.9              |
| 11          | 14.40 | 19.12             |
| 12          | 13.70 | 16.1              |
| Mean        | 15.2  | 15.5              |
| SD          | 1.48  | 2.01              |
|             |       |                   |

#### FIGURE 5.9

Hypothetical data for an experiment with one within-subjects factor having three levels (A, B, C). Values are the mean task completion time(s) for five repetitions of an editing task.

#### Counterbalancing worked!



Editing Method

[17-803] Empirical Methods, Fall 2022

11

## Latin Squares: (a) $2 \times 2$ . (b) $3 \times 3$ . (c) $4 \times 4$ . (d) $5 \times 5$



Latin squares: (a)  $2 \times 2$ . (b)  $3 \times 3$ . (c)  $4 \times 4$ . (d)  $5 \times 5$ .



#### What's wrong with this?

[17-803] Empirical Methods, Fall 2022



12





### A deficiency in Latin squares of order 3 and higher is that conditions precede and follow other conditions an unequal number of times.

#### If present, an A-B sequence effect is not fully compensated for.





14

### Experiment Comparing Two Scanning Keyboards

| (a)        |    |   |   |    |   |         | (b) | Testir        | ng Half        |       |
|------------|----|---|---|----|---|---------|-----|---------------|----------------|-------|
|            |    |   |   |    |   |         |     | First         | Second         | Group |
|            |    |   |   |    |   |         |     | (Trials 1-10) | (Trials 11-20) |       |
|            |    |   |   |    |   |         |     | 20.42         | 27.12          |       |
|            |    |   |   |    |   |         |     | 22.68         | 28.39          |       |
|            |    |   |   |    |   |         |     | 23.41         | 32.50          |       |
|            | Е  | Α | R | D  | U |         |     | 25.22         | 32.12          |       |
| -          | м  | c | = | w  | в |         |     | 26.62         | 35.94          | 1     |
| <b>'</b>   | IN | 0 | Г | ~~ | Б |         |     | 28.82         | 37.66          | 1     |
| 0          | Н  | С | Ρ | v  | J |         |     | 30.38         | 39.07          |       |
| 1          | М  | Υ | κ | Q  |   |         |     | 31.66         | 35.64          |       |
| Ι.         | ~  | v | 7 |    | " |         |     | 32.11         | 42.76          |       |
| <b>  -</b> | G  | ^ | 2 | ·  |   |         |     | 34.31         | 41.06          |       |
| <          | r  | q |   |    |   |         |     | 19.47         | 24.97          |       |
|            |    | _ |   |    |   |         | 1   | 19.42         | 27.27          |       |
| _          | Е  | Α | R | D  | U | 1: the_ |     | 22.05         | 29.34          |       |
| т          | Ν  | s | F | w  | в | 2: of   |     | 23.03         | 31.45          |       |
|            | ы  | ~ | Б | v  |   | 3: an   |     | 24.82         | 33.46          | 2     |
| I۲         | п  | C | Г | v  | 3 | 5. an_  |     | 26.53         | 33.08          | 2     |
| 1          | М  | Υ | κ | Q  | , | 4: a_   |     | 28.59         | 34.30          |       |
| L          | G  | х | z |    | " | 5: in   |     | 26.78         | 35.82          |       |
|            | hu |   | ~ | _  |   | 6. to   |     | 31.09         | 36.57          |       |
| <u> </u>   | bw | r | q |    |   | 6: to_  |     | 31.07         | 37.43          |       |

#### **FIGURE 5.13**

Experiment comparing two scanning keyboards: (a) Letters-only keyboard (LO, top) and letters plus word prediction keyboard (L + WP, bottom). (b) Results for entry speed in characters per minute (cpm). Shaded cells are for the LO keyboard.





(*center*), and by group (*right*). Error bars show ±1 SD.

## Three ways to summarize the results in Figure 5.13b, by keyboard (*left*), by testing half





(*center*), and by group (*right*). Error bars show ±1 SD.

### Learning effect

Three ways to summarize the results in Figure 5.13b, by keyboard (*left*), by testing half





Three ways to summarize the results in Figure 5.13b, by keyboard (*left*), by testing half (*center*), and by group (*right*). Error bars show ±1 SD.

### Learning effect

#### Asymmetric skill transfer!

Counterbalancing only works if the order effects are the same or similar.







#### **FIGURE 5.15**

Demonstration of asymmetric skill transfer. The chart uses the data in Figure 5.13b.

### Learning: Both groups improved, at comparable rates





#### **FIGURE 5.15**

Demonstration of asymmetric skill transfer. The chart uses the data in Figure 5.13b.

#### Harder to start with the more complex keyboard

[17-803] Empirical Methods, Fall 2022



20



#### **FIGURE 5.15**

Demonstration of asymmetric skill transfer. The chart uses the data in Figure 5.13b.

### But: higher efficiency eventually with the more complex keyboard





#### **FIGURE 5.15**

Demonstration of asymmetric skill transfer. The chart uses the data in Figure 5.13b.

#### Asymmetric skill transfer!



Investigating more than one independent variable

#### Basic X vs C

| R | X | Ο |
|---|---|---|
| R |   | Ο |
|   |   |   |

| Basic | X <sub>A</sub> vs |
|-------|-------------------|
| R     | XA                |
| R     | X <sub>B</sub>    |



- Three major advantages:
  - > They often require fewer units.
  - They allow testing combinations of treatments more easily.
  - > They allow testing interactions.



| ive X  | s with                           | pretest |
|--------|----------------------------------|---------|
| 0<br>0 | X <sub>A</sub><br>X <sub>B</sub> | O<br>O  |
|        |                                  |         |

Factorial

| R | $X_{A1B1}$        |
|---|-------------------|
| R | X <sub>A1B2</sub> |
| R | X <sub>A2B1</sub> |
| R | X <sub>A2B2</sub> |





# Example: Typing speed = f(Experience, Device)







![](_page_26_Picture_4.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Picture_4.jpeg)

### **Example of Interaction Effects**

- Novice users can select targets faster with a touchscreen than with a mouse.
- Experienced users can select targets faster with a mouse than with a touchscreen.
- The target selection speeds for both the mouse and the touchscreen increase as the user gains more experience with the device.
- However, the increase in speed is much larger for the mouse than for the touchscreen.

![](_page_28_Figure_7.jpeg)

| reen |  |
|------|--|
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

![](_page_28_Picture_9.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_4.jpeg)

#### Basic X vs C

| R | X | Ο |
|---|---|---|
| R |   | O |
|   |   |   |

| Basic | X <sub>A</sub> vs |
|-------|-------------------|
| R     | XA                |
| R     | X <sub>B</sub>    |

![](_page_30_Figure_3.jpeg)

![](_page_30_Figure_6.jpeg)

| ive Xs with pretest |                                  | st     | Factorial |             |                                                             |
|---------------------|----------------------------------|--------|-----------|-------------|-------------------------------------------------------------|
| 0<br>0              | X <sub>A</sub><br>X <sub>B</sub> | 0<br>0 |           | R<br>R<br>R | X <sub>A1B1</sub><br>X <sub>A1B2</sub><br>X <sub>A2B1</sub> |
|                     |                                  |        |           | R           | X <sub>A2B2</sub>                                           |

### Examine how effects change over time

![](_page_30_Picture_9.jpeg)

![](_page_30_Picture_10.jpeg)

![](_page_31_Figure_0.jpeg)

#### **FIGURE 5.16**

Example of a longitudinal study. Two text entry methods were tested and compared over 20 sessions of input. Each session involved about 30 minutes of text entry.

![](_page_31_Picture_6.jpeg)

![](_page_32_Figure_0.jpeg)

#### **FIGURE 5.17**

Crossover point. With practice, human performance with a new interaction technique may eventually exceed human performance using a current technique.

(From MacKenzie and Zhang, 1999)

![](_page_32_Picture_6.jpeg)

![](_page_32_Picture_7.jpeg)

#### Basic X vs C

| R | X | Ο |
|---|---|---|
| R |   | Ο |
|   |   |   |

| Basi | c X <sub>A</sub> vs |
|------|---------------------|
| R    | XA                  |
| R    | XB                  |

![](_page_33_Figure_3.jpeg)

#### Used to counterbalance and assess order effects with multiple treatments

![](_page_33_Figure_7.jpeg)

| tive Xs with pretes |                                  |        | est                              | F      | acto   | orial                                  |              |
|---------------------|----------------------------------|--------|----------------------------------|--------|--------|----------------------------------------|--------------|
| 0<br>0              | X <sub>A</sub><br>X <sub>B</sub> | 0<br>0 |                                  |        | R<br>R | X <sub>A1B</sub><br>X <sub>A1B</sub> 2 | <br><u>2</u> |
|                     |                                  |        |                                  | _ 1    | R      | X <sub>A2B</sub>                       | l            |
|                     |                                  |        |                                  |        | R      | X <sub>A2B2</sub>                      | 2            |
| C                   | crosso                           | ver    |                                  |        |        |                                        |              |
|                     | R<br>R                           | 0<br>0 | X <sub>A</sub><br>X <sub>B</sub> | 0<br>0 | X<br>X | А<br>А                                 | 0<br>0       |

![](_page_33_Picture_9.jpeg)

![](_page_33_Picture_10.jpeg)

# Example paper presentations

# WSDM (Conference on Web Search and Data Mining) Experiment

#### Setup

- Four committee members reviewed each paper
- Two single blind, two double blind

#### Results

- "Reviewers in the single-blind condition [...] preferentially bid for papers from top universities and companies."
- universities [1.58], and top companies [2.10]."

Tomkins, A., Zhang, M., & Heavlin, W. D. (2017). Reviewer bias in single-versus double-blind peer review. Proceedings of the National Academy of Sciences, 114(48), 12708-12713.

Single-blind reviewers are significantly more likely than their double-blind counterparts to recommend for acceptance papers from famous authors [odds multiplier 1.64], top

[17-803] Empirical Methods, Fall 2022

![](_page_35_Picture_14.jpeg)

36

### NeurIPS (Conference on Neural Information Processing Systems) Experiment

#### Setup

- Organizers split the program committee down the middle
- Most submitted papers were assigned to a single side
- 10% of submissions (166) were reviewed by both halves of the committee

#### Results

(with a 95% confidence interval of 40-75%)"

http://blog.mrtz.org/2014/12/15/the-nips-experiment.html

"most papers [57%] at NeurIPS would be rejected if one reran the conference review process

![](_page_36_Picture_11.jpeg)

37

# **Statistical Conclusion Validity**

![](_page_37_Picture_1.jpeg)

# Hypothesis Tests

Aka "significance tests"

#### Purpose:

- Could random chance be responsible for an observed effect?
- ► Null hypothesis (H<sub>0</sub>):
  - The hypothesis that chance is to blame.
  - e.g., "There is no difference in the mean time to complete a task using NL2Code vs. writing code from scratch."

#### Alternative hypothesis (H<sub>a</sub>):

- Counterpoint to the null (what you hope to prove).
- e.g., "It takes less time on average to complete a task using NL2Code rather than by writing code from scratch."

![](_page_38_Picture_16.jpeg)

### Aside: Why Do We Need a Hypothesis? Why Not Just Look at the Outcome of the Experiment and Go With Whichever Treatment Does Better?

Experiment: invent a series of 50 coin flips. Write down a series of random 1s and 0s: [1, 0, 1, 0, 1, 0, ...]

![](_page_39_Picture_5.jpeg)

![](_page_39_Picture_6.jpeg)

## Aside: How Do You Interpret the P-Value?

- H<sub>0</sub>: "There is no difference in the mean time to complete a task using NL2Code vs. writing code from scratch."
- H<sub>a</sub>: "It takes less time on average to complete a task using NL2Code rather than writing code from scratch."
- You run some statistical test (e.g., t-test) and obtain a p-value.

![](_page_40_Picture_6.jpeg)

### Aside: P-Value Controversy

> What we would like the p-value to convey: We hope for a low value, so we can conclude that we've proved something.)

> What the p-value actually represents:

The probability that, given a chance model, results as extreme as the observed results could occur:  $P(D|H_0)$ 

Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1105-1114).

Carnegie Mellon University

[17-803] Empirical Methods, Fall 2022

#### The probability that the result is due to chance: $P(H_0|D)$

![](_page_41_Picture_10.jpeg)

### The P Value Is the Probability of the Observed Outcome (X) Plus all "More Extreme" Outcomes

![](_page_42_Figure_1.jpeg)

Graphical depiction of the definition of a (one-sided) P value. The curve represents the probability of every observed outcome under the null hypothesis.

![](_page_42_Picture_5.jpeg)

### The P Value Is the Probability of the Observed Outcome (X) Plus all "More Extreme" Outcomes

- Not the probability that the null hypothesis is true!
- > Example: Is a coin fair or not?
  - $H_0$ : The coin is fair: P(Heads) = P(Tails) = 1/2
  - >  $H_a$ : The coin is biased: P(Heads) ≠ 1/2

![](_page_43_Picture_5.jpeg)

![](_page_43_Picture_11.jpeg)

### **Consider Four Consecutive Coin Flips:**

First toss:

![](_page_44_Picture_2.jpeg)

![](_page_44_Picture_5.jpeg)

### Probability

?

![](_page_44_Picture_8.jpeg)

### **Consider Four Consecutive Coin Flips:**

**First toss:** 

![](_page_45_Picture_2.jpeg)

#### Second toss:

![](_page_45_Picture_4.jpeg)

![](_page_45_Picture_5.jpeg)

![](_page_45_Picture_7.jpeg)

### Probability

0.5

?

![](_page_45_Picture_11.jpeg)

### **Consider Four Consecutive Coin Flips:**

**First toss:** 

![](_page_46_Picture_2.jpeg)

### Second toss:

![](_page_46_Picture_4.jpeg)

![](_page_46_Picture_5.jpeg)

### Third toss:

![](_page_46_Picture_7.jpeg)

![](_page_46_Picture_8.jpeg)

![](_page_46_Picture_9.jpeg)

![](_page_46_Picture_10.jpeg)

![](_page_46_Picture_11.jpeg)

![](_page_46_Picture_14.jpeg)

### Probability

0.5

0.25

![](_page_46_Picture_18.jpeg)

![](_page_46_Picture_19.jpeg)

0.125

0.0625

![](_page_46_Picture_23.jpeg)

### Is Coin Fair?

#### Two-sided P = 0.125.

![](_page_47_Picture_2.jpeg)

#### 0.0625

#### > This does not mean that the probability of the coin being fair is only 12.5%!

![](_page_47_Picture_7.jpeg)

#### 0.0625

![](_page_47_Picture_10.jpeg)

### Aside: P-Value Controversy

> What we would like the p-value to convey: We hope for a low value, so we can conclude that we've proved something.)

> What the p-value actually represents:

The probability that, given a chance model, results as extreme as the observed results could occur:  $P(D|H_0)$ 

Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1105-1114).

Carnegie Mellon University

[17-803] Empirical Methods, Fall 2022

#### The probability that the result is due to chance: $P(H_0|D)$

![](_page_48_Picture_10.jpeg)

### Is Coin Fair?

#### > Two-sided P = 0.125.

![](_page_49_Picture_2.jpeg)

#### 0.0625

#### This does not mean that the probability of the coin being fair is only 12.5%!

 $P(H_0|D)$ 

![](_page_49_Picture_8.jpeg)

#### 0.0625

# $P(D|H_0) P(H_0)$ P(D)

![](_page_49_Picture_13.jpeg)

Common false belief that the probability of a conclusion being in error can be calculated from the data in a single experiment without reference to external evidence or the plausibility of the underlying mechanism.

... to be continued

### Credits

- Graphics: Dave DiCello photography (cover)
- Chapters from Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasiexperimental designs for generalized causal inference. Wadsworth Publishing
  - Ch1: Experiments and generalized causal inference
  - Ch2: Statistical conclusion validity and internal validity
  - Ch3: Construct validity and external validity
  - Ch8: Randomized experiments
- Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. O'Reilly Media.
- Freedman, D., Pisani, R., Purves, R., & Adhikari, A. (2007). Statistics.
- Goodman, S. (2008). A dirty dozen: Twelve pvalue misconceptions. In Seminars in Hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.

- Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research methods in human-computer interaction. Morgan Kaufmann.
  - Ch 3: Experimental design
  - Ch 4: Statistical analysis
- MacKenzie, I. S. (2012). Human-computer interaction: An empirical research perspective.
  - Ch 6: Hypothesis testing
- Robertson, J., & Kaptein, M. (Eds.). (2016). Modern statistical methods for HCI. Cham: Springer.
  - Ch 5: Effect sizes and power analysis
  - Ch 13: Fair statistical communication
  - Ch 14: Improving statistical practice
- Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI. In Proceedings of the SIGCHI **Conference on Human Factors in Computing Systems** (pp. 1105-1114).

![](_page_52_Picture_23.jpeg)

![](_page_52_Picture_28.jpeg)

### Read

![](_page_53_Picture_1.jpeg)

#### Human-Computer Interaction

An Empirical Research Perspective

M<

I. Scott MacKenzie

Ch 6 (Hypothesis testing)

Ch 1 (Experiments and causality) Ch 2 & 3 (Validity) Ch 8 (Randomized experiments)

Claes Wohlin - Per Runeson Martin Höst - Magnus C. Ohlsson Björn Regnell - Anders Wesslén

Experimentation in Software Engineering

2 Springer

#### Ch 10 (Analysis and interpretation)

![](_page_53_Picture_15.jpeg)

Ch 5 (Effect sizes and power analysis) Ch 13 (Fair statistical communication) Ch 14 (Improving statistical practice)

![](_page_53_Picture_17.jpeg)

#### Ch 6 (Statistical methods and measurement)

![](_page_53_Picture_19.jpeg)

#### Ch 3 (Experimental design) Ch 4 (Statistical analysis)

![](_page_53_Picture_22.jpeg)

![](_page_53_Picture_23.jpeg)