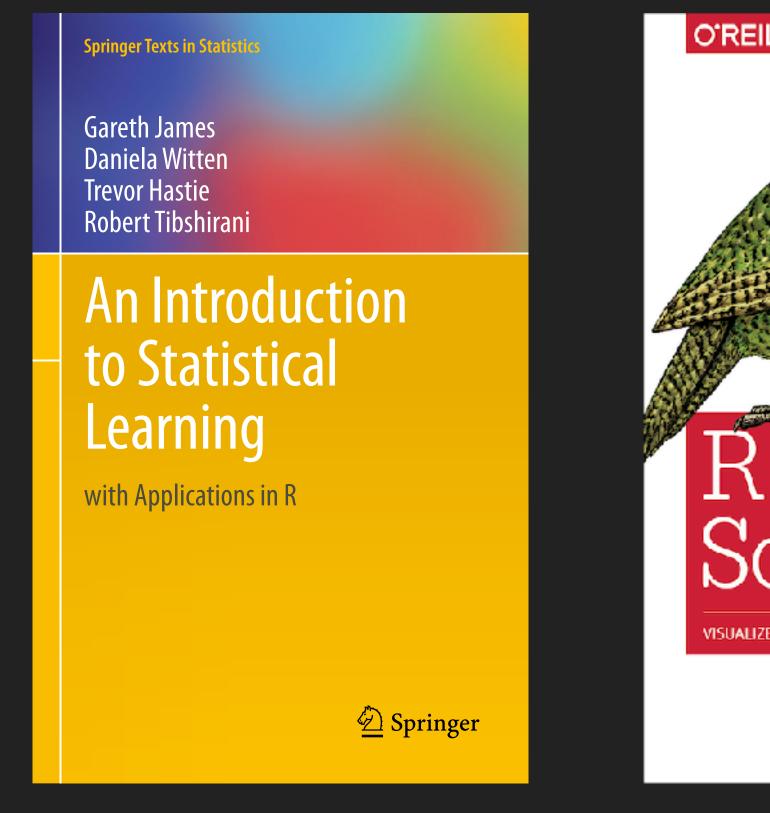
17-803 Empirical Methods Bogdan Vasilescu, S3D

Thursday, October 27, 2022

Photo credit: <u>Dave DiCello</u>

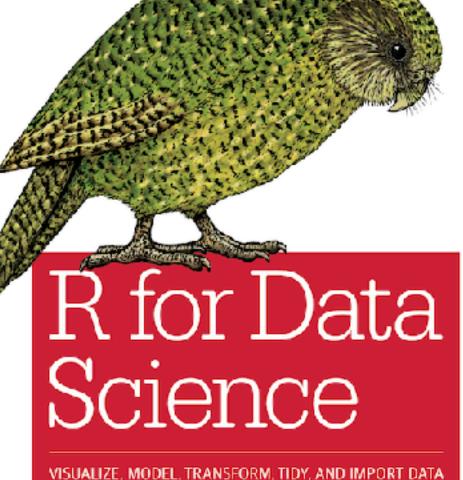
Outline for Today

- Intro to linear regression
- Common pitfalls
- Diagnostics
- Activity



Ch 3 (Linear regression)

O'REILLY*



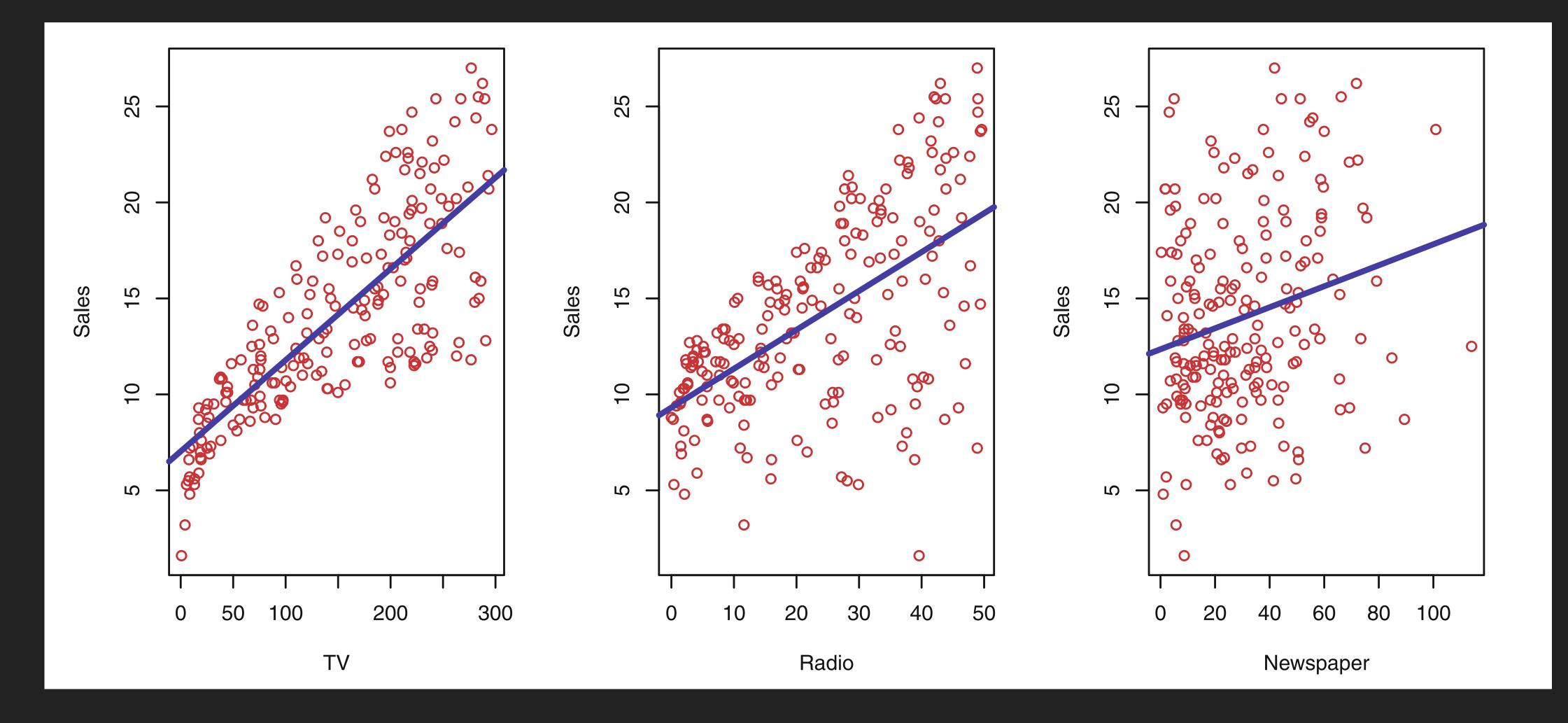
Hadley Wickham & Garrett Grolemund

Ch 22-24 (Modeling)

2

Let's start with a case study.

Sales (in thousands of dollars) as a function of TV, radio, and newspaper advertising budgets (in thousands of dollars), for 200 cities.

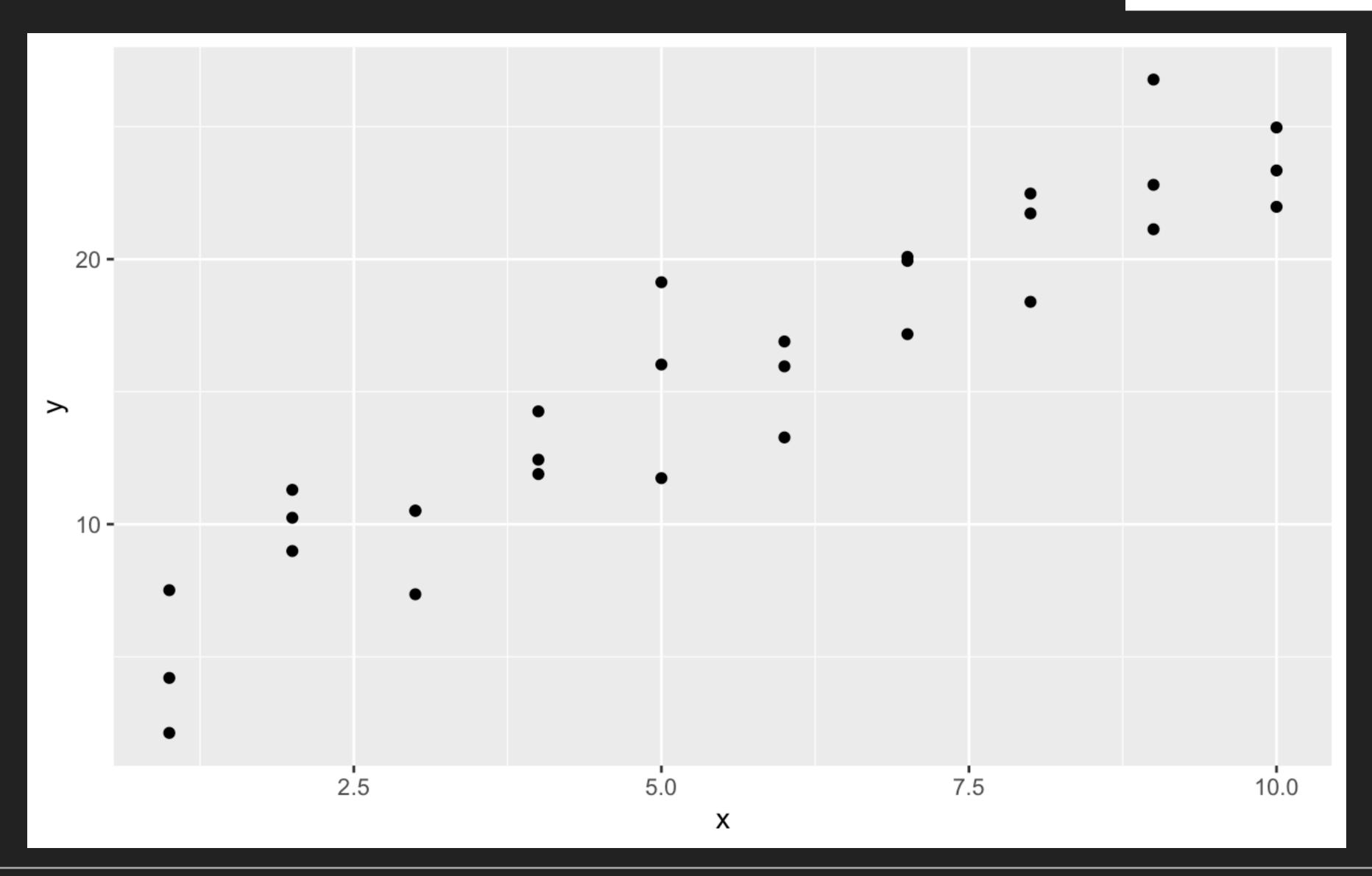


4

A Few Important Questions That We Might Seek To Address

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- > Which media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

Simple Linear Regression

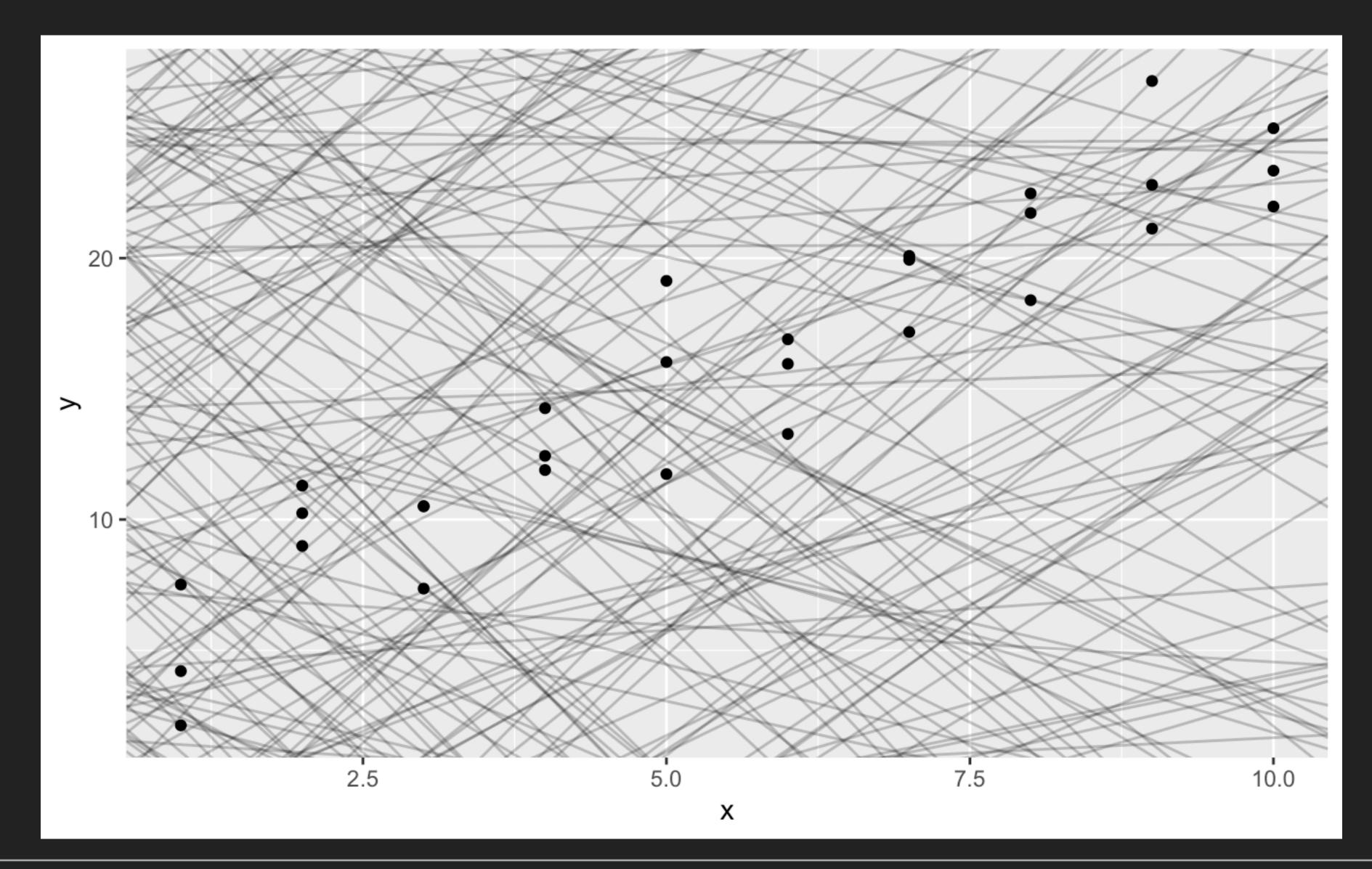


 $Y \approx \beta_0 + \beta_1 X.$

[17-803] Empirical Methods, Fall 2022

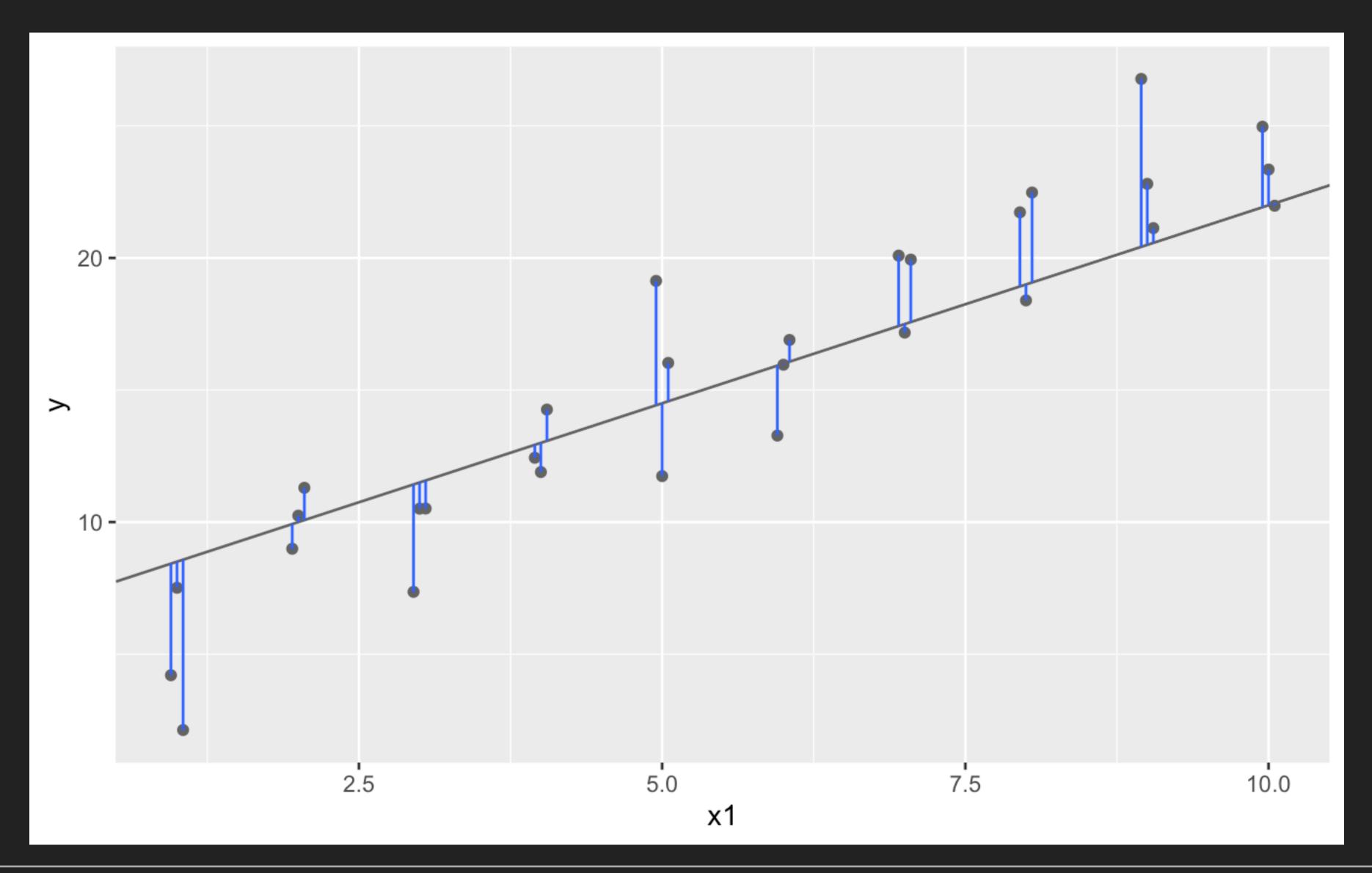
6

Many Possible Linear Models



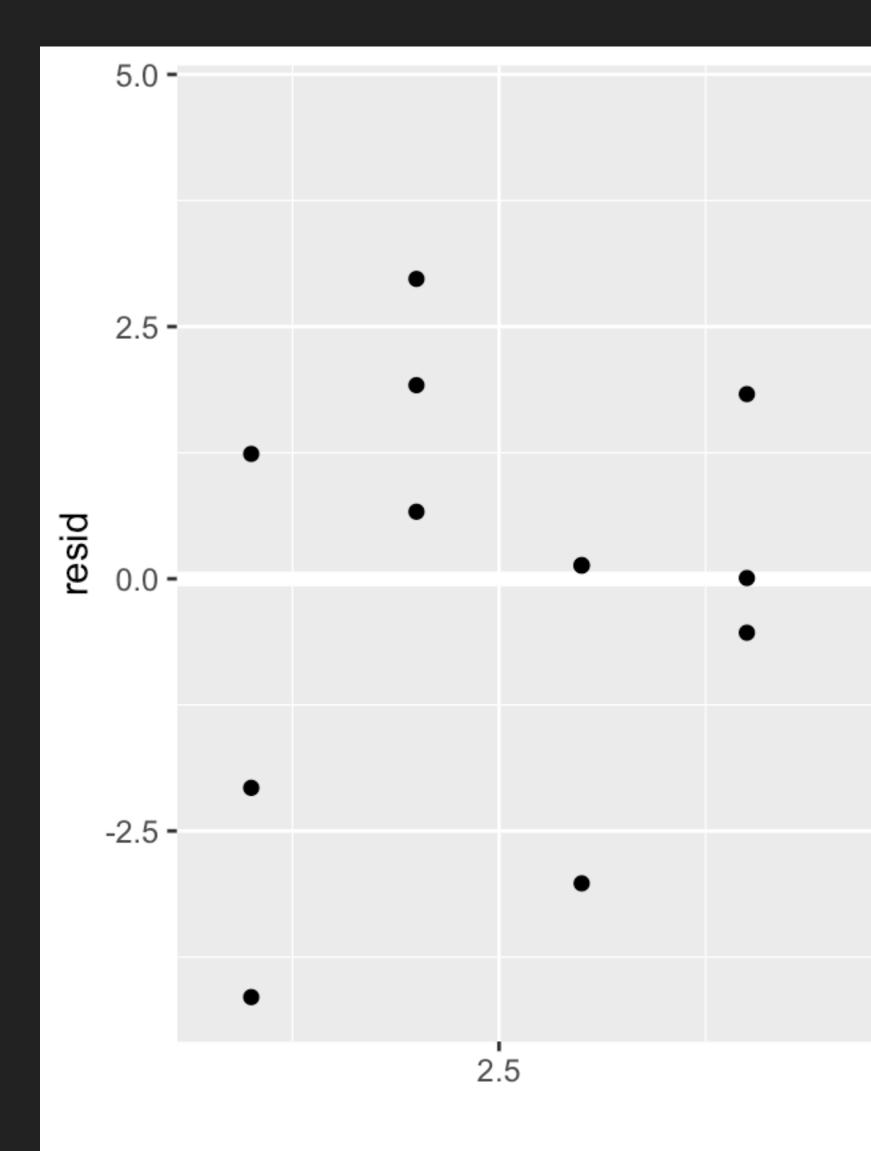
[17-803] Empirical Methods, Fall 2022

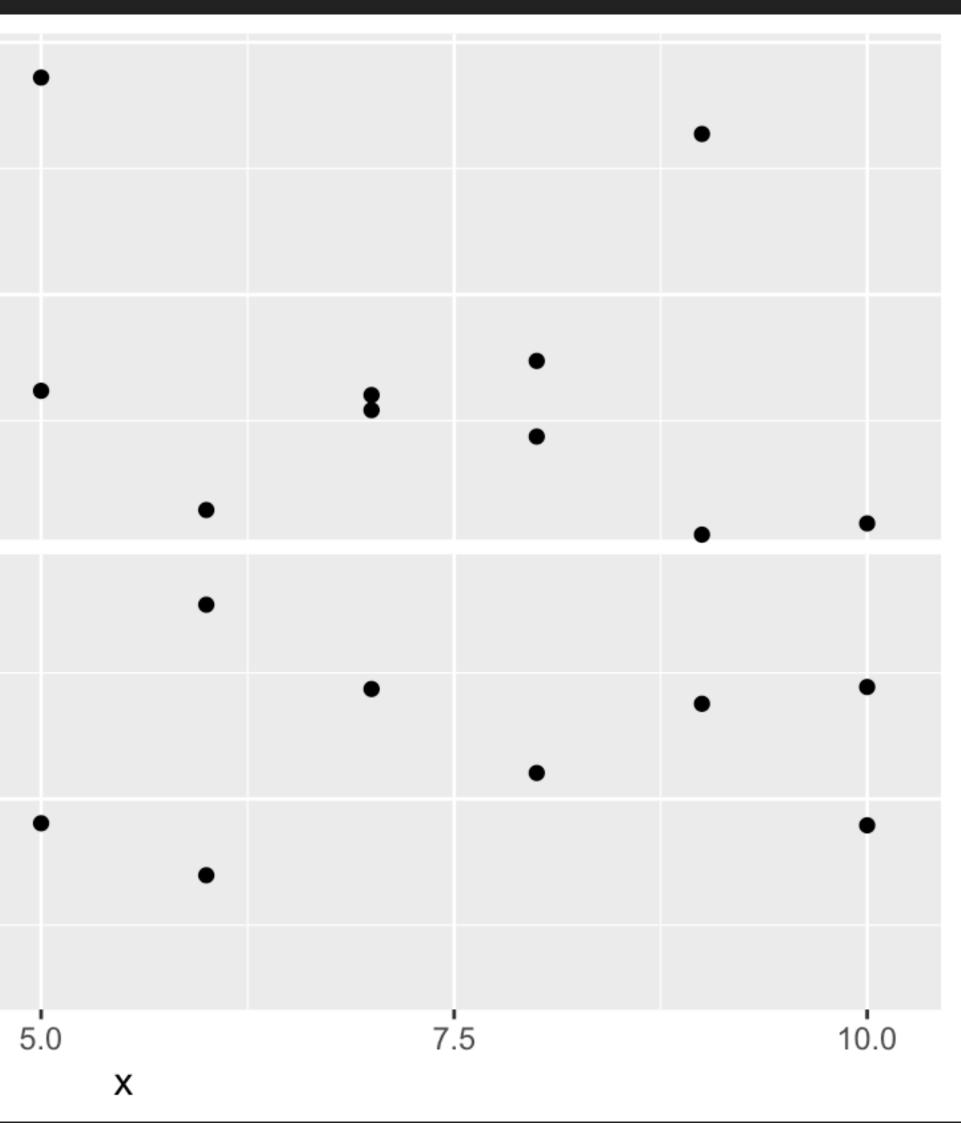
Best Model? Minimize Error



[17-803] Empirical Methods, Fall 2022

Residuals





[17-803] Empirical Methods, Fall 2022

Simple Linear Regression

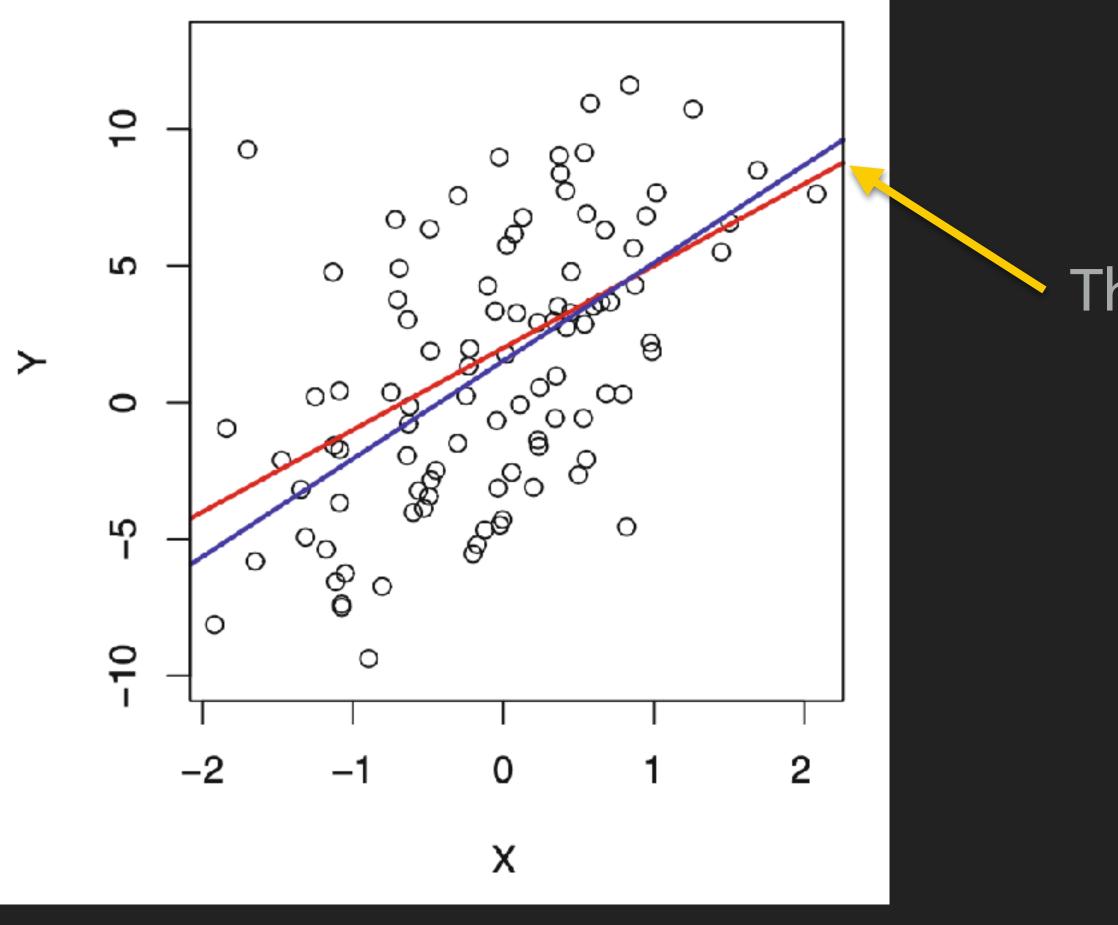
The least squares fit for the regression of sales onto TV



 $Y \approx \beta_0 + \beta_1 X.$

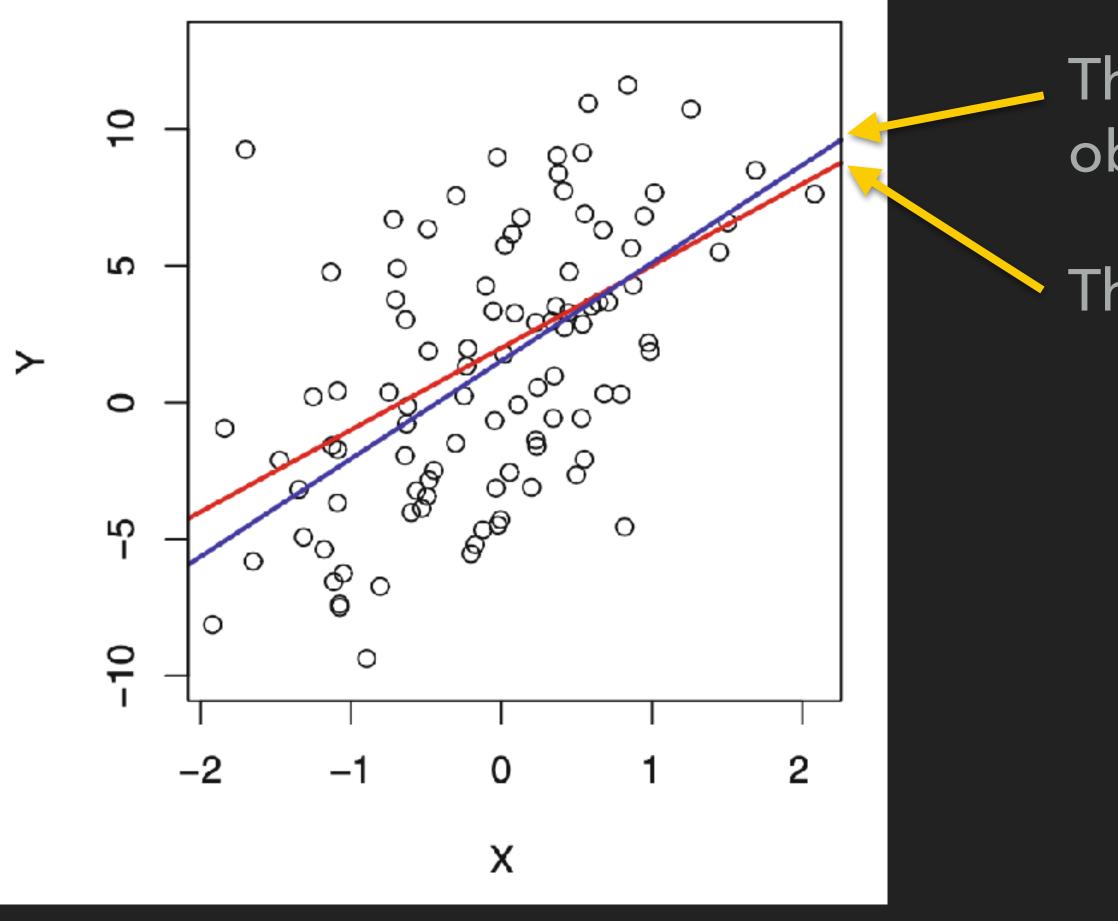
The least squares fit for the regression of sales onto TV is found by minimizing the sum of squared errors.

10



The true relationship:

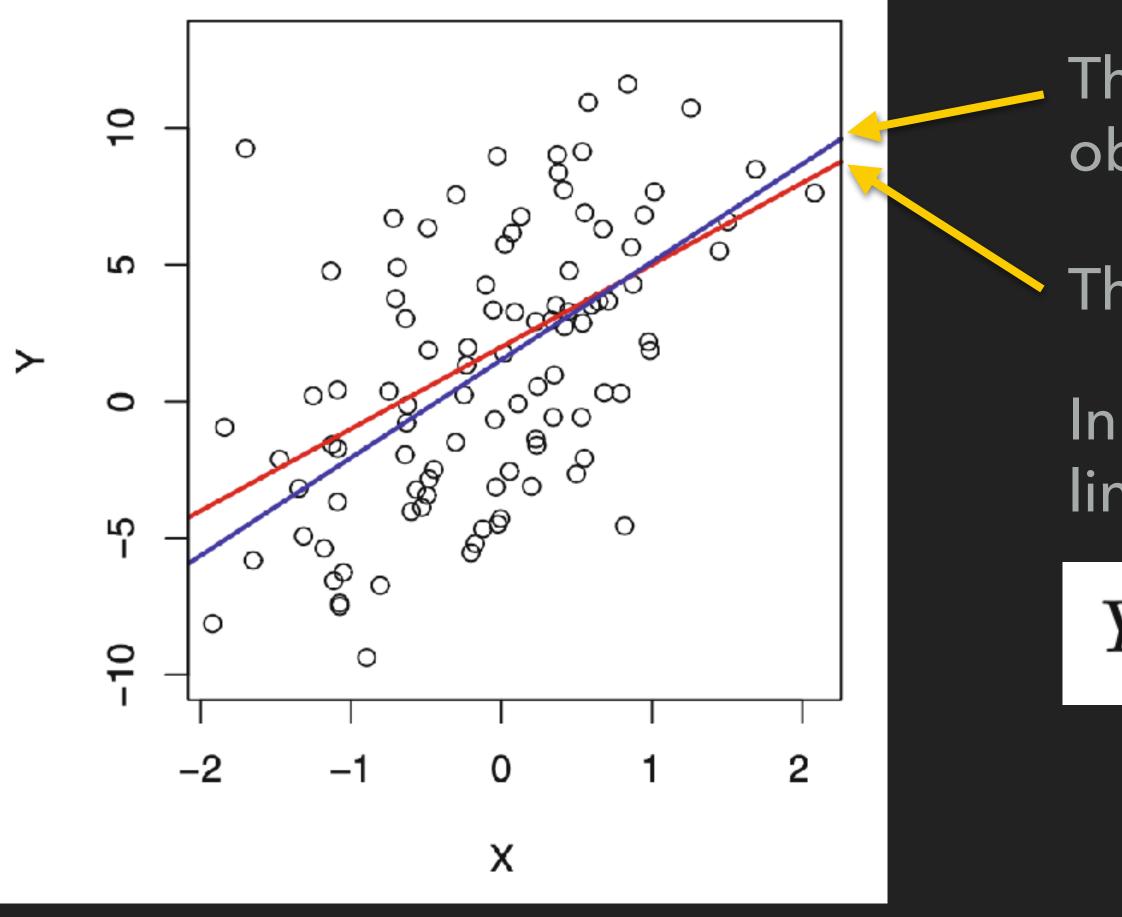
$$f(X) = 2 + 3X$$



The least squares estimate for f(X) based on the observed data.

The true relationship:

$$f(X) = 2 + 3X$$



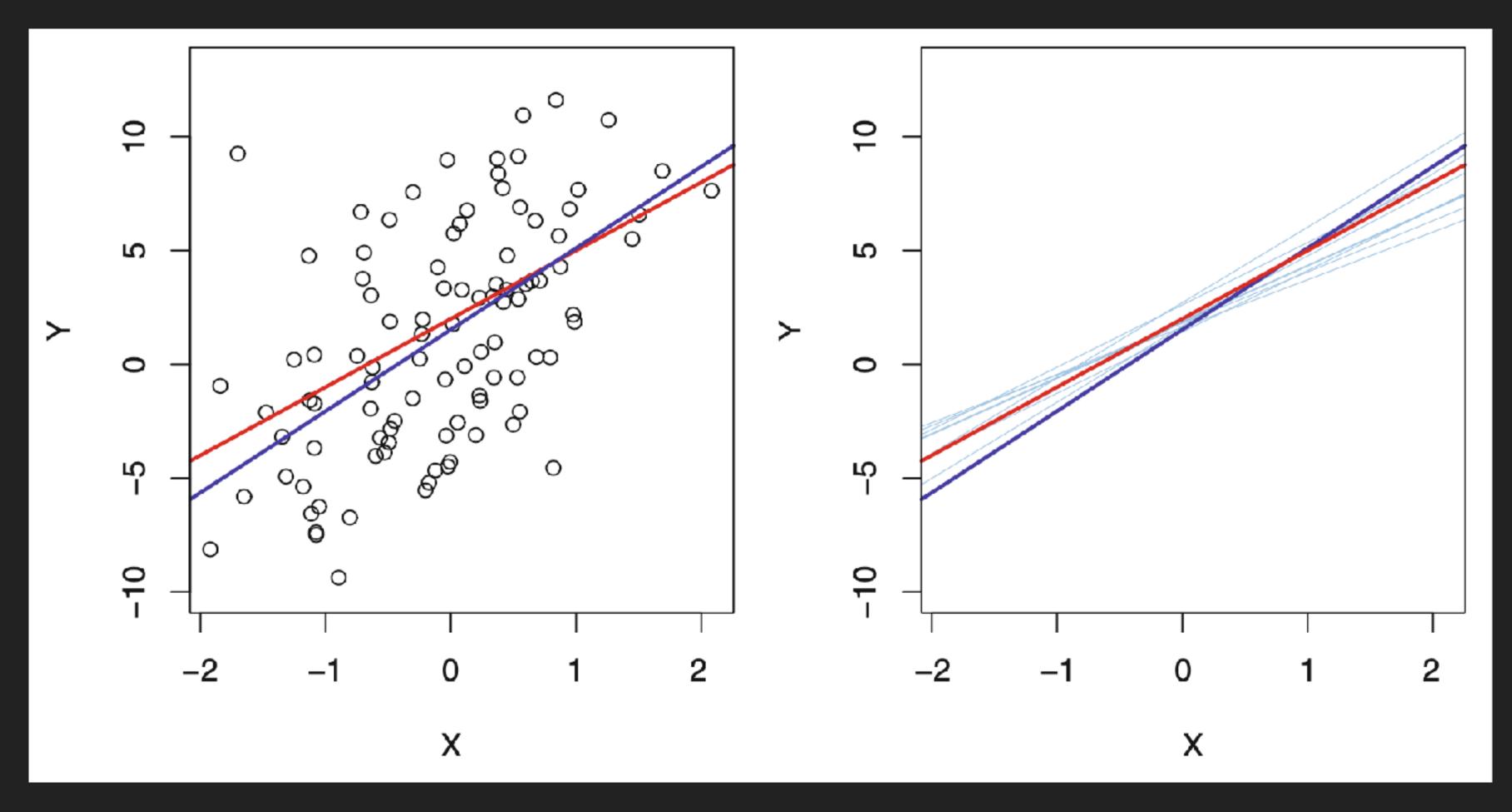
The least squares estimate for f(X) based on the observed data.

The true relationship:

$$f(X) = 2 + 3X$$

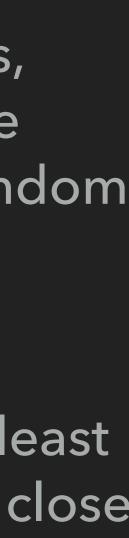
In real applications, the population regression line is unobserved.

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

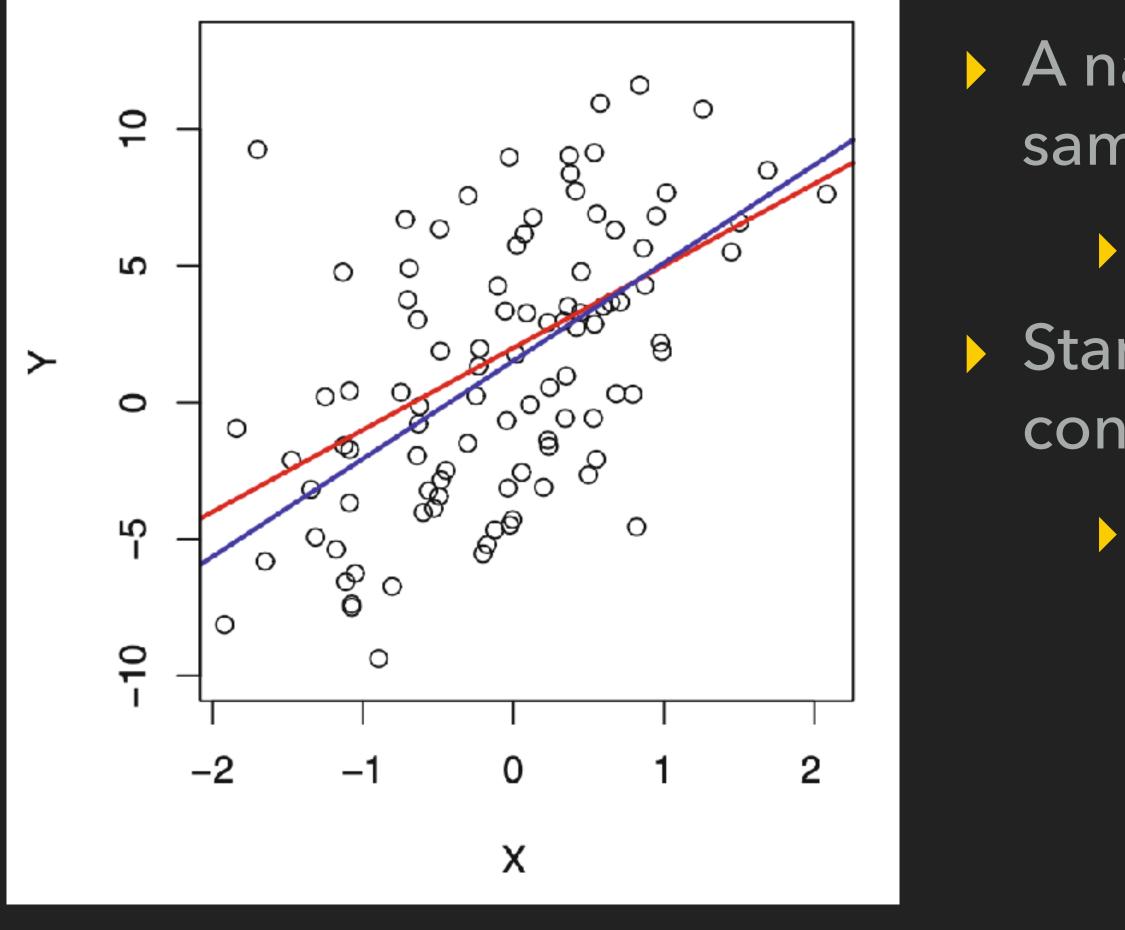


Ten least squares lines, each computed on the basis of a separate random set of observations.

The average of many least squares lines is pretty close to the true population regression line.



Analogy with the estimation of the population mean μ of a random variable Y



- > A natural question: how accurate is the sample mean μ^{2} as an estimate of μ^{2} ?
 - Standard error
 - Standard errors can be used to compute confidence intervals.
 - > A 95% confidence interval is defined as a range of values such that with 95% probability, the range will contain the true unknown value of the parameter.

Analogy with the estimation of the population mean μ of a random variable Y



For linear regression, the 95% confidence interval for $\beta 1$ approximately takes the form

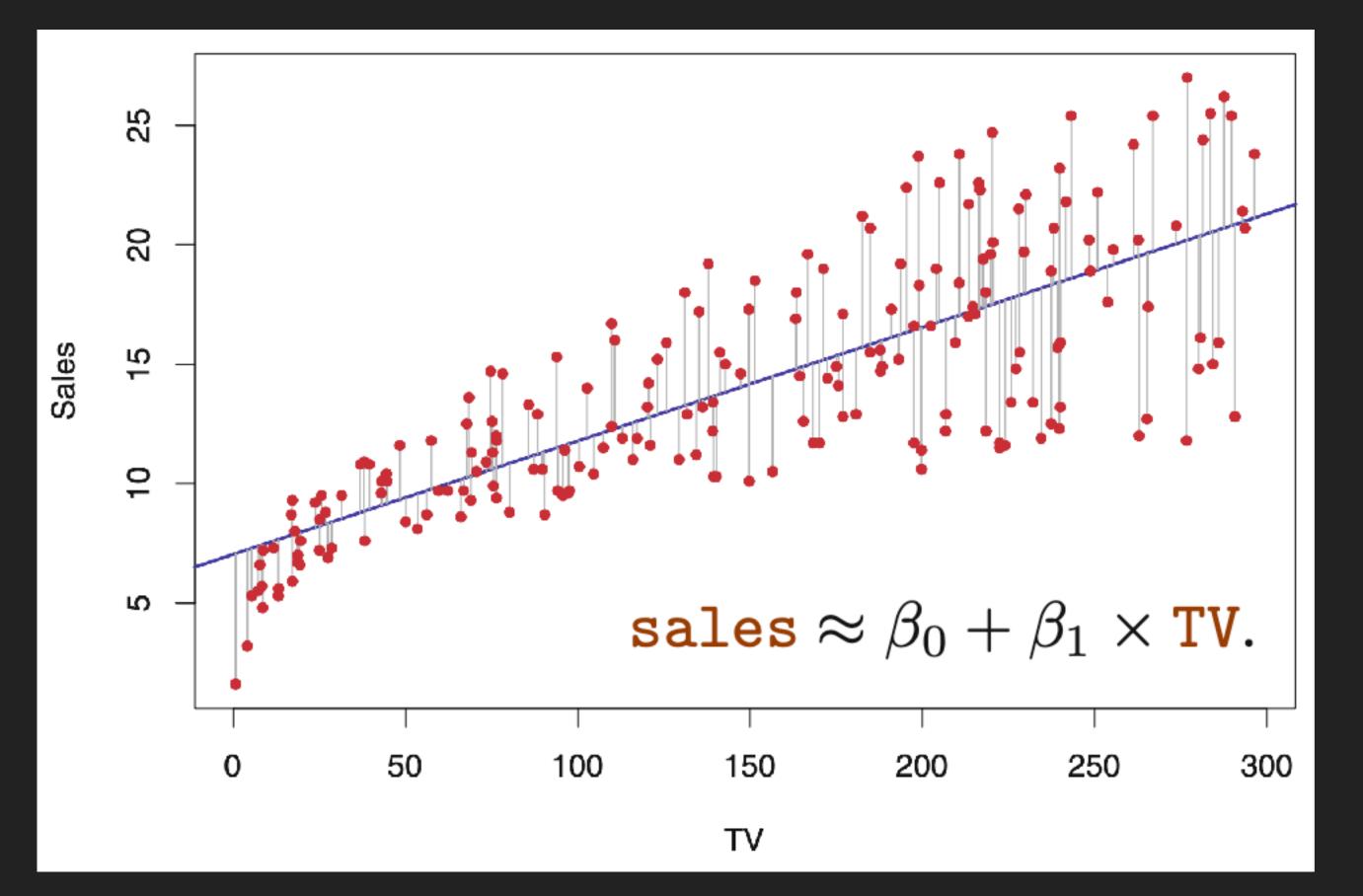
$$\hat{\beta}_1 \pm 2 \cdot \operatorname{SE}(\hat{\beta}_1).$$

Similarly, a confidence interval for $\beta 0$ approximately takes the form

$$\hat{\beta}_0 \pm 2 \cdot \operatorname{SE}(\hat{\beta}_0).$$

Back to our example

The least squares fit for the regression of sales onto TV



The 95 % CI for β0: [6.130, 7.935] The 95 % CI for β1: [0.042, 0.053]

- In the absence of any advertising, sales will, on average, fall somewhere between 6,130 and 7,935 units.
- For each \$1,000 increase in TV advertising, there will be an average increase in sales of between 42 and 53 units.

17

Key idea for empirical research

Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

- Testing the null hypothesis: > H0 : There is no relationship between X and Y
- > vs the alternative hypothesis Ha : There is some relationship between X and Y

$$Y = \beta_0$$

 $+\beta_1 X + \epsilon.$

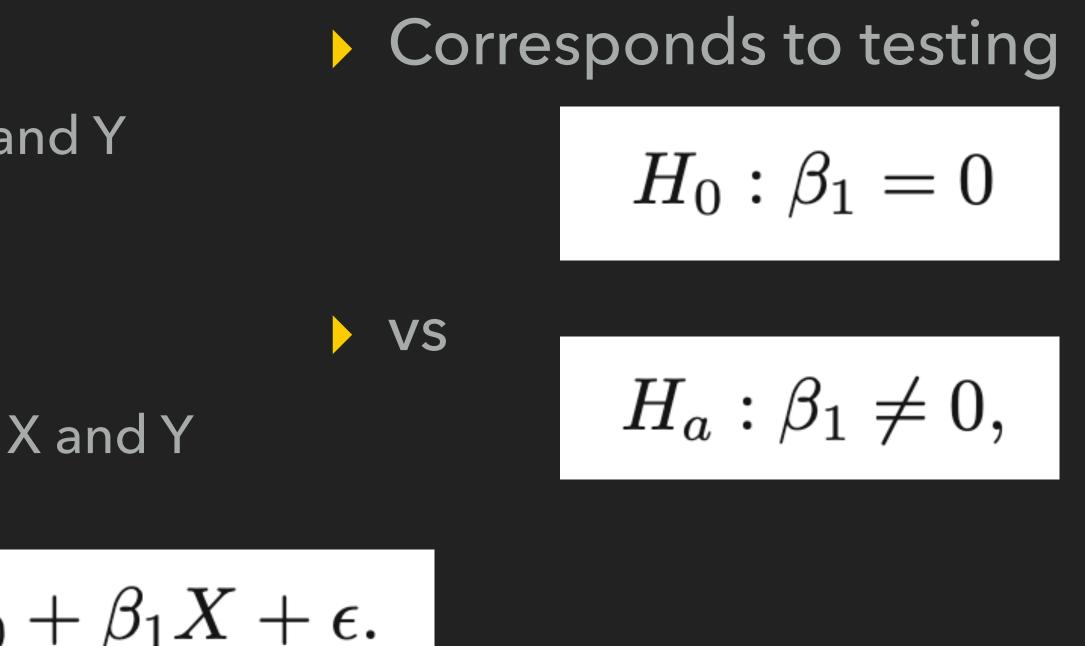
[17-803] Empirical Methods, Fall 2022

19

Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

- Testing the null hypothesis: H0 : There is no relationship between X and Y
- > vs the alternative hypothesis Ha : There is some relationship between X and Y

$$Y = \beta_0$$



=> Compute a t-statistic and associated p-value

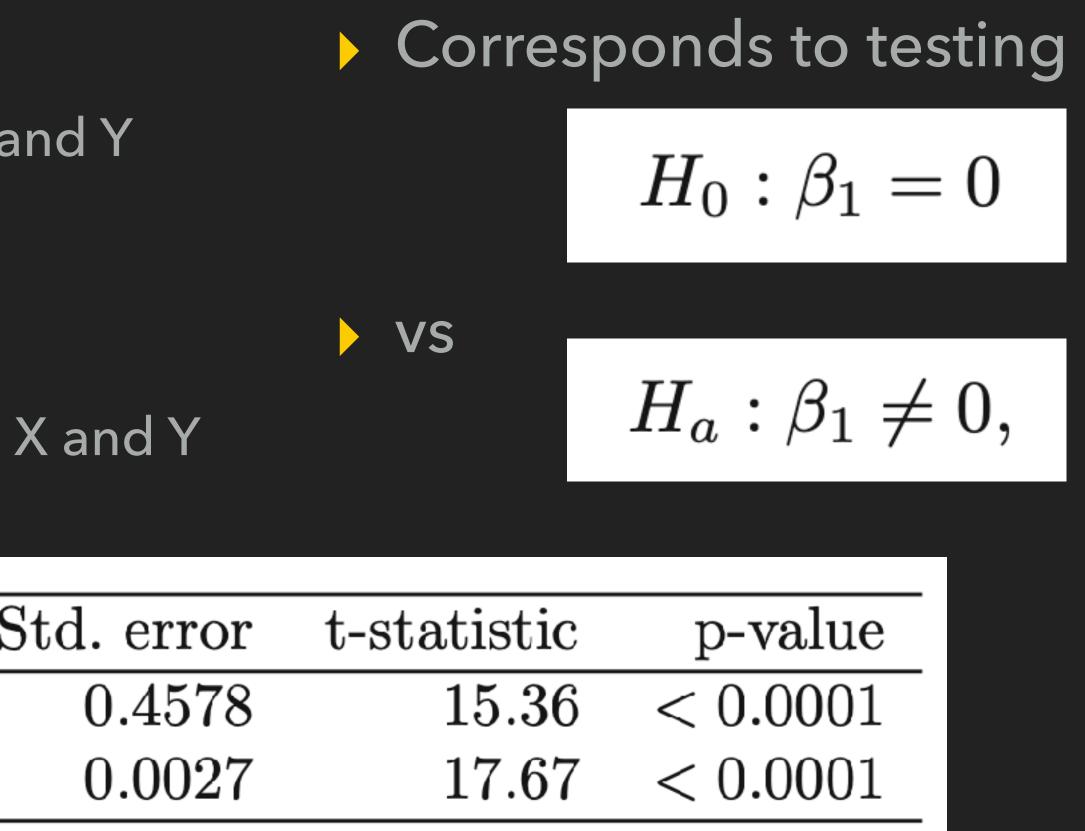
[17-803] Empirical Methods, Fall 2022

Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

- Testing the null hypothesis: H0 : There is no relationship between X and Y
- vs the alternative hypothesis
 - Ha : There is some relationship between X and Y

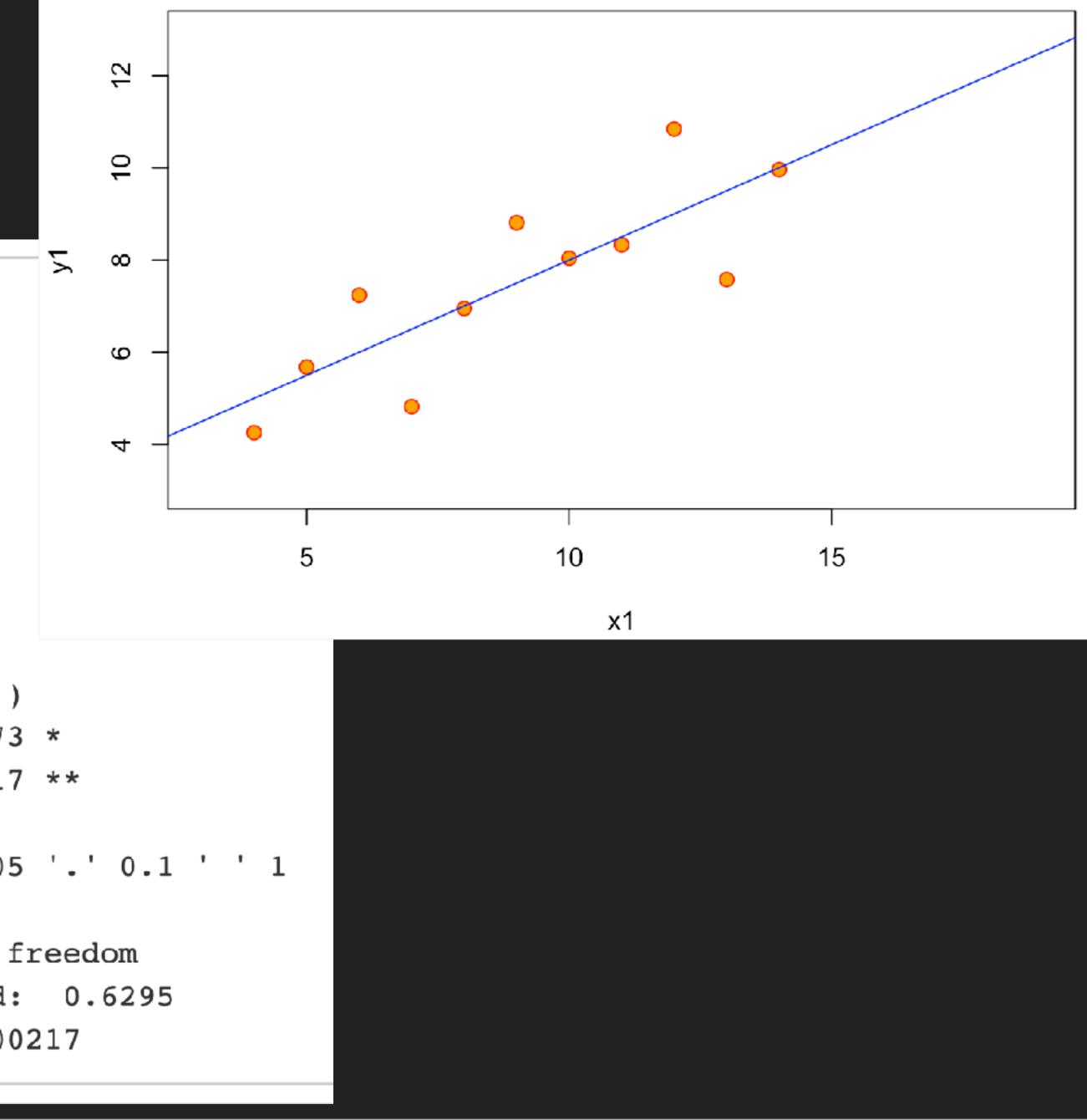
	Coefficient	S
Intercept	7.0325	
TV	0.0475	

An increase of \$1,000 in the TV advertising budget is associated with an increase in sales by around 50 units.



Another Example

Ŧ	##	
7	##	Call:
Ŧ	##	$lm(formula = y1 \sim x1$, data = anscombe)
Ŧ	##	
7	##	Residuals:
Ŧ	##	Min 1Q Median 3Q Max
Ŧ	##	-1.92127 -0.45577 -0.04136 0.70941 1.83882
7	##	
Ŧ	##	Coefficients:
Ŧ	##	Estimate Std. Error t value Pr(> t)
7	##	(Intercept) 3.0001 1.1247 2.667 0.02573
7	##	x1 0.5001 0.1179 4.241 0.00217
Ŧ	##	
7	##	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05
7	##	
Ŧ	##	Residual standard error: 1.237 on 9 degrees of f
7	##	Multiple R-squared: 0.6665, Adjusted R-squared:
Ŧ	##	F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00



[17-803] Empirical Methods, Fall 2022

22

Let's make it more realistic

How To Extend our Analysis To Accommodate all Predictors?

One option is to run three separate simple linear regressions.

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

How To Extend our Analysis To Accommodate all Predictors?

A better option is to give each predictor a separate slope coefficient in a single model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

$$\texttt{sales} = \beta_0 + \beta_1 \times \texttt{TV} + \beta_2$$

 \triangleright We interpret β_j as the average effect on Y of a one unit increase in Xj, holding all other predictors fixed.

 \times radio $+ \beta_3 \times$ newspaper $+ \epsilon$.

[17-803] Empirical Methods, Fall 2022

Aside: Ingredients for Establishing a Causal Relationship

The cause preceded the effect

The cause was related to the effect

We can find no plausible alternative explanation for the effect other than the cause

[17-803] Empirical Methods, Fall 2022

Back to our Advertising Example

Intercept TV radio

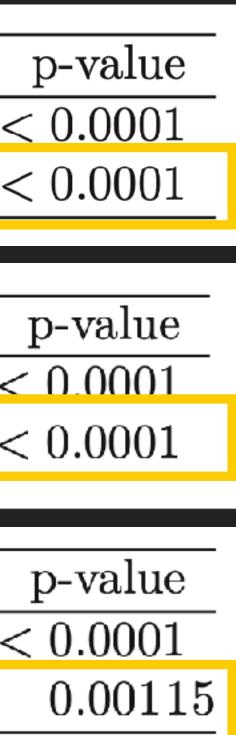
newspaper

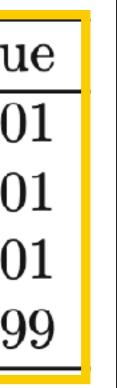
	Coefficient	Std. error	t-statistic	
Intercept	7.0325	0.4578	15.36	<
TV	0.0475	0.0027	17.67	<

	Coefficient	Std. error	t-statistic	
Intercept	9.312	0.563	16.54	<
radio	0.203	0.020	9.92	<

	Coefficient	Std. error	t-statistic	
Intercept	12.351	0.621	19.88	<
newspaper	0.055	0.017	3.30	

	Coefficient	Std. error	t-statistic	p-valu
t	2.939	0.3119	9.42	< 0.000
	0.046	0.0014	32.81	< 0.000
	0.189	0.0086	21.89	< 0.000
r	-0.001	0.0059	-0.18	0.859





Interaction Effects

Consider the standard linear regression model with two variables

$$Y = \beta_0 + \beta_1 X_1$$

According to this model, if we increase X1 by one unit, then Y will increase by an average of β 1 units

- $+\beta_2 X_2 + \epsilon.$

Interaction Effects

Extending this model with an interaction term gives:

$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$

Interaction Effects

Extending this model with an interaction term gives:

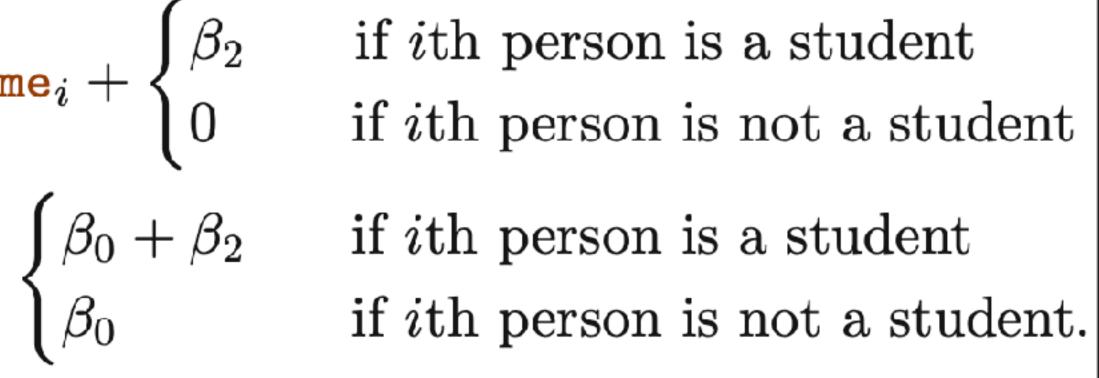
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon.$$

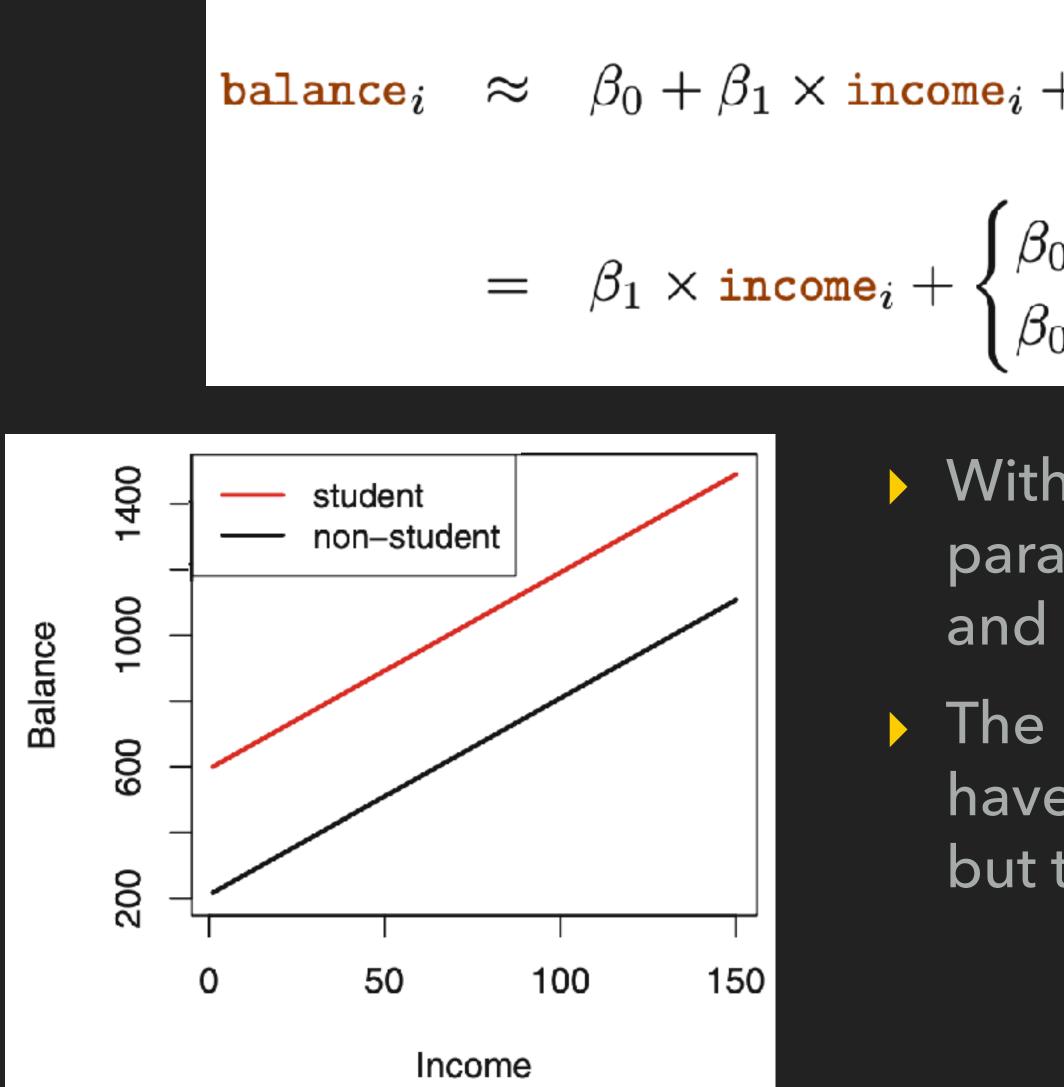
$$= \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \epsilon$$
$$= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \epsilon$$

According to this model, adjusting X2 will change the impact of X1 on Y

$\texttt{balance}_i \approx \beta_0 + \beta_1 \times \texttt{income}_i + \begin{cases} \beta_2 \\ 0 \end{cases}$

$$= \beta_1 \times \texttt{income}_i + \begin{cases} \beta \\ \beta \end{cases}$$



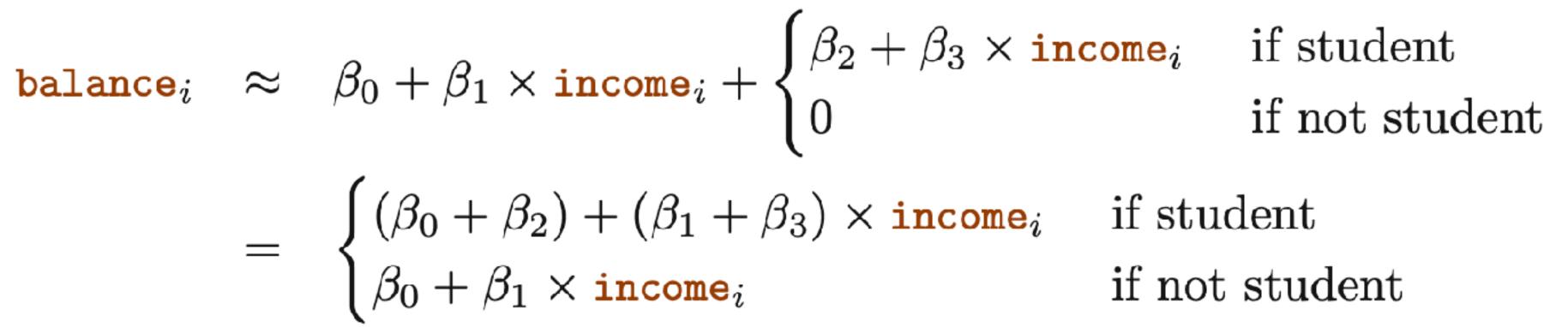


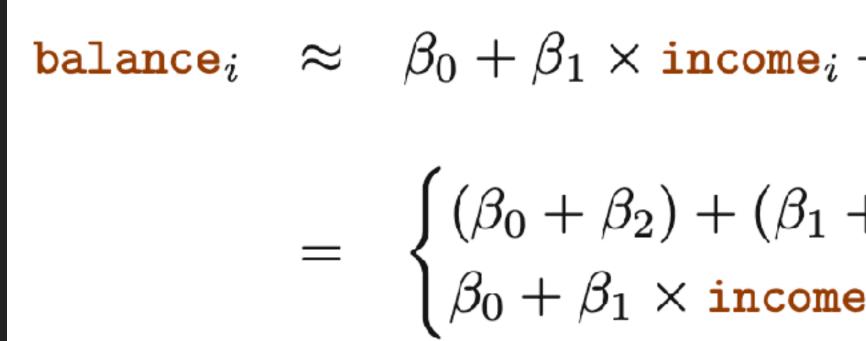
$+ \begin{cases} eta_2 \\ 0 \end{cases}$	if i th person is a student if i th person is not a student
$\beta_0 + \beta_2$	if i th person is a student if i th person is not a student
β_0	if i th person is not a student.

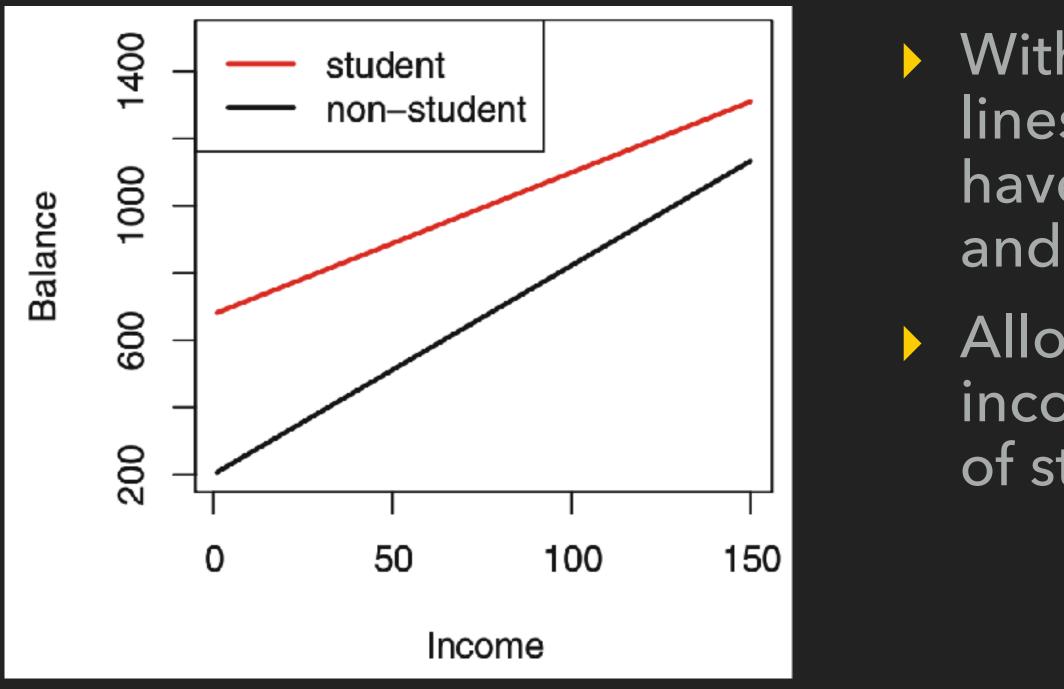
Without an interaction term: fitting two parallel lines to the data, one for students and one for non-students.

The lines for students and non-students have different intercepts, $\beta 0 + \beta 2$ versus $\beta 0$, but the same slope, $\beta 1$.

$$= \begin{cases} (\beta_0 + \beta_2) + (\beta_1 + \beta_0) \\ \beta_0 + \beta_1 \times \texttt{income} \end{cases}$$







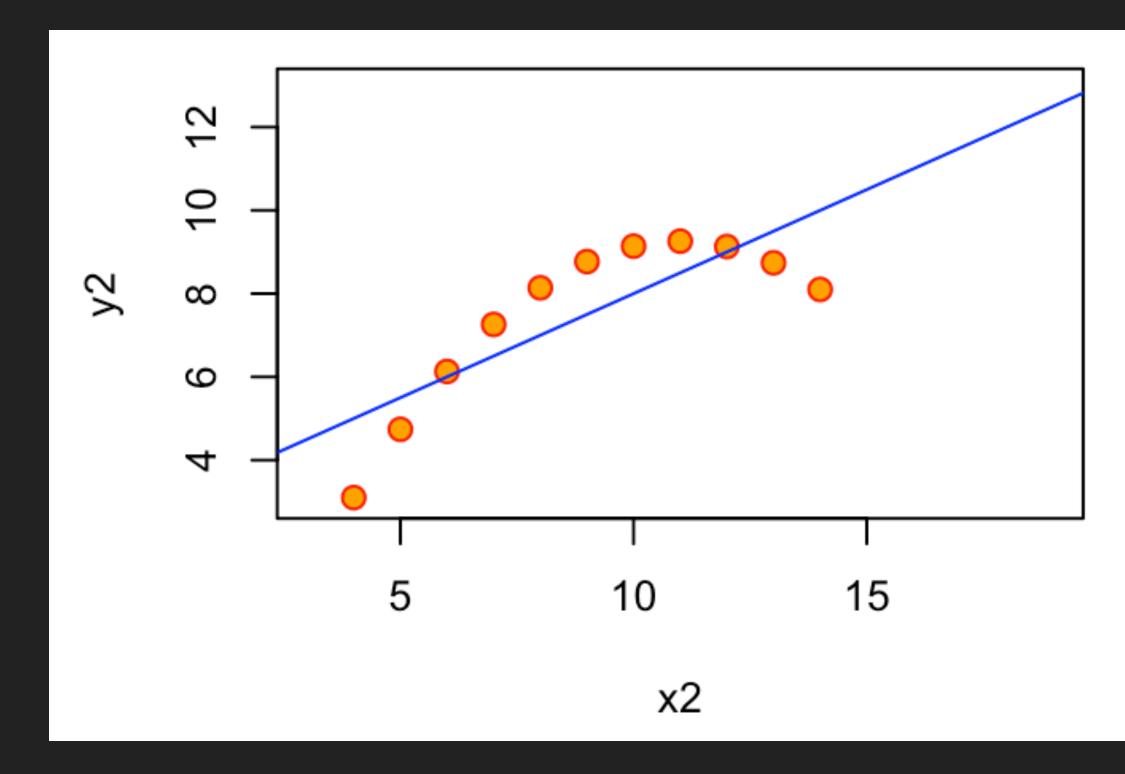
$+\begin{cases} \beta_2 + \beta_3 \times in \\ 0 \end{cases}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$+\beta_3) \times \texttt{income}_i$	if student if not student
\mathbf{e}_i	II HOU SUUGEIIU

With an interaction term: the regression lines for the students and the non-students have different intercepts, $\beta 0+\beta 2$ versus $\beta 0$, and different slopes, $\beta 1 + \beta 3$ versus $\beta 1$.

Allows for the possibility that changes in income may affect the credit card balances of students and non-students differently.

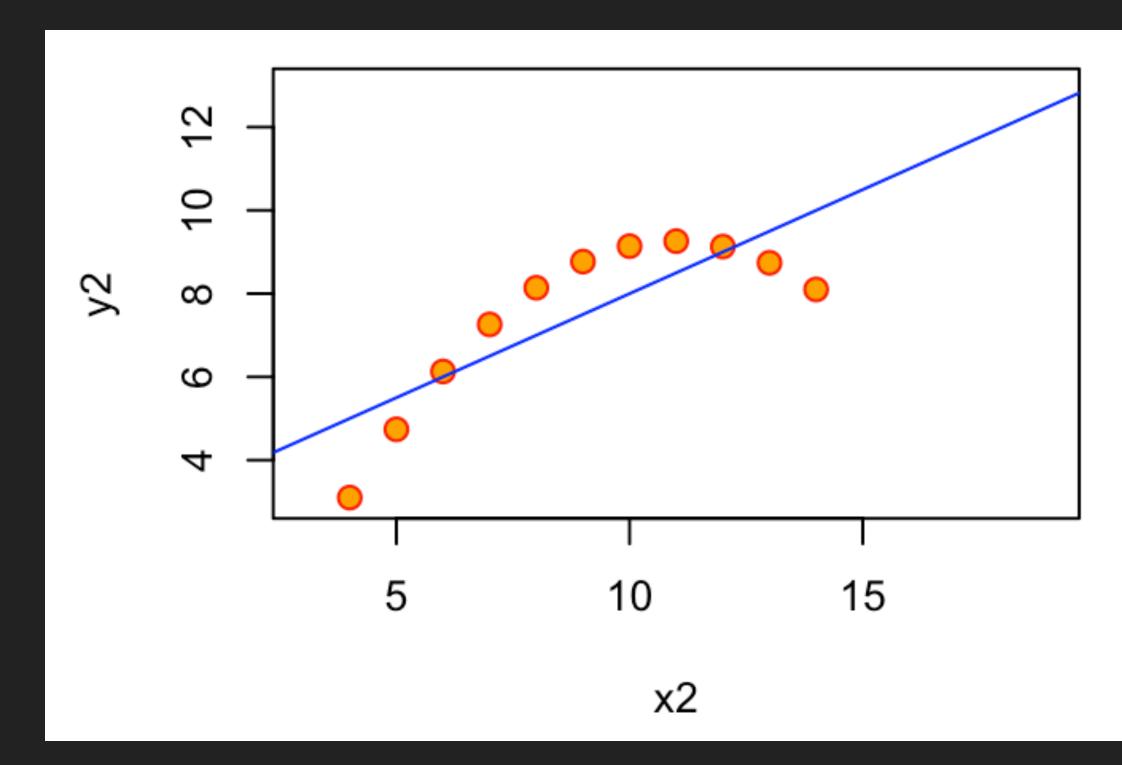
It's complicated.

Potential Problem: Non-Linearity of the Data

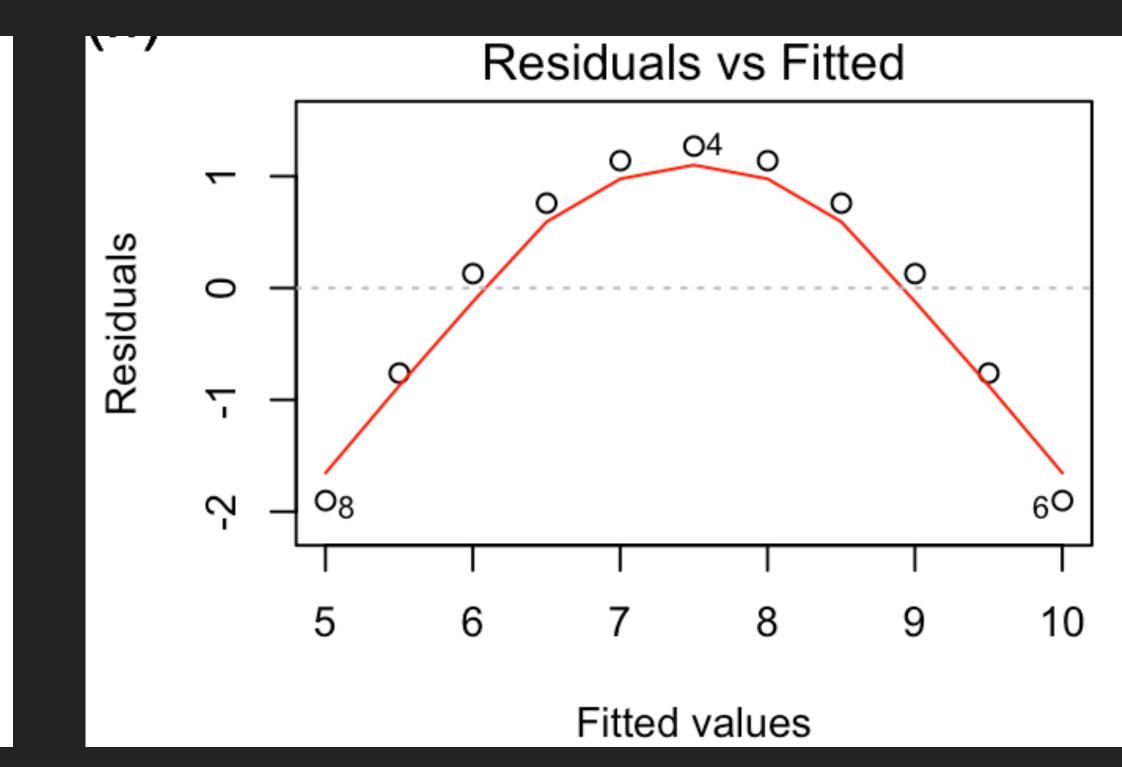


[17-803] Empirical Methods, Fall 2022

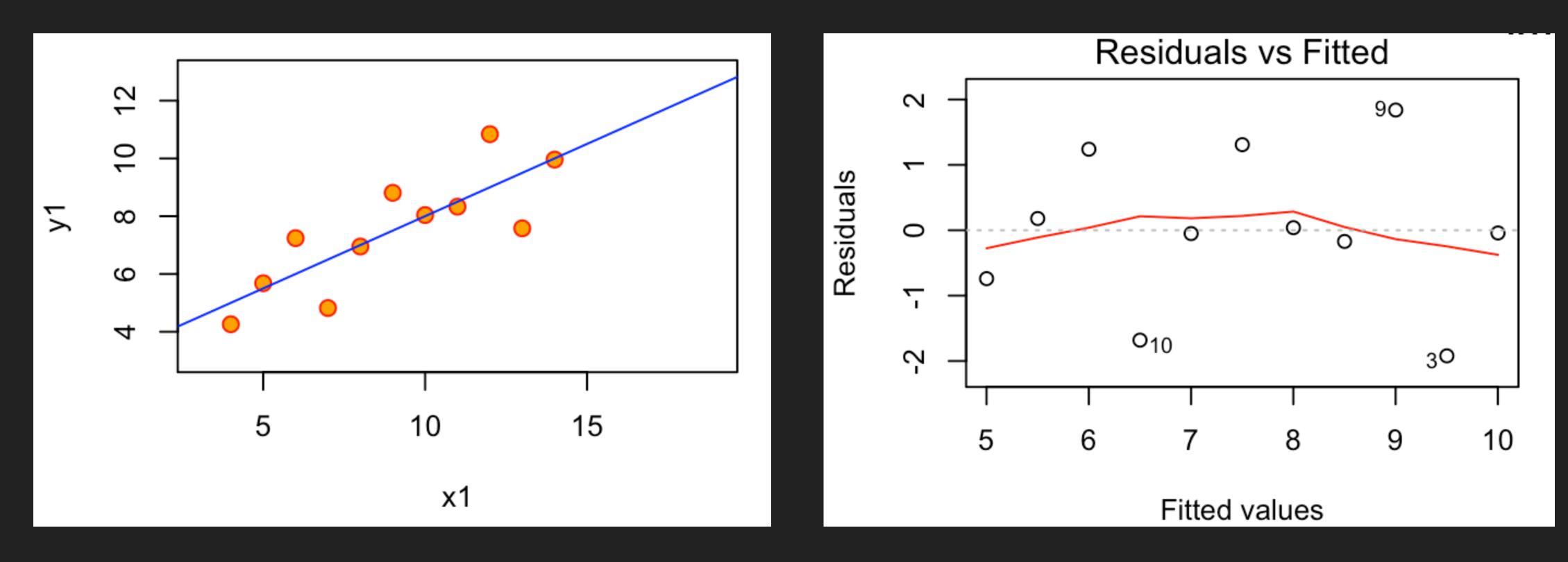
Potential Problem: Non-Linearity of the Data



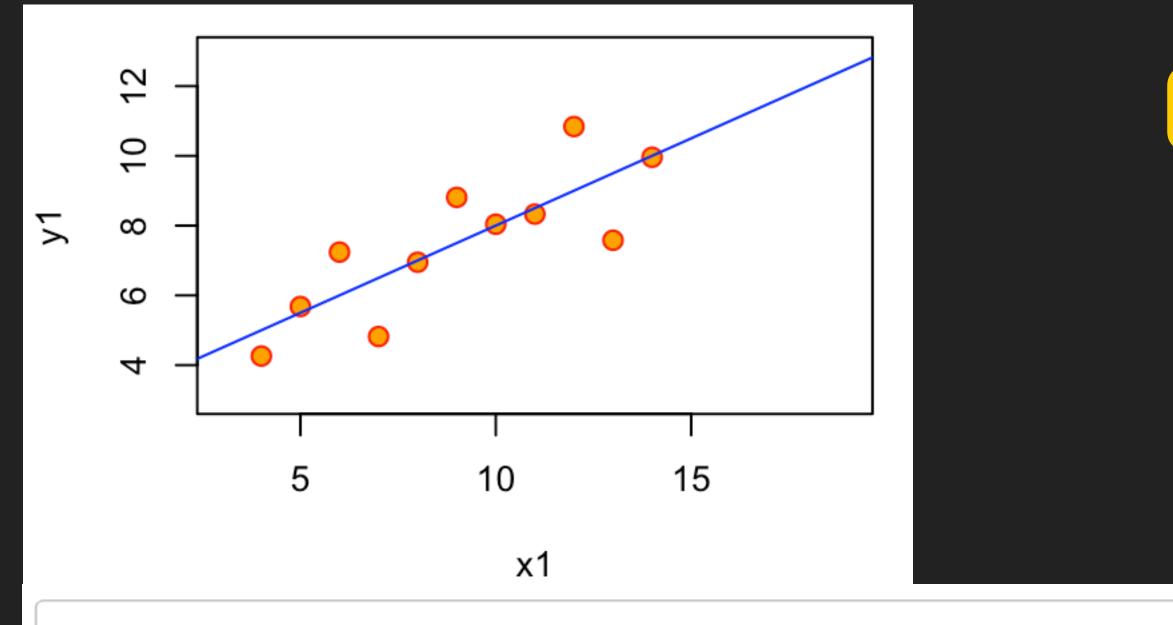
Ideally, the residual plot will show no discernible pattern. > Otherwise, indicates nonlinear relationship in the data.



Potential Problem: Non-Linearity of the Data

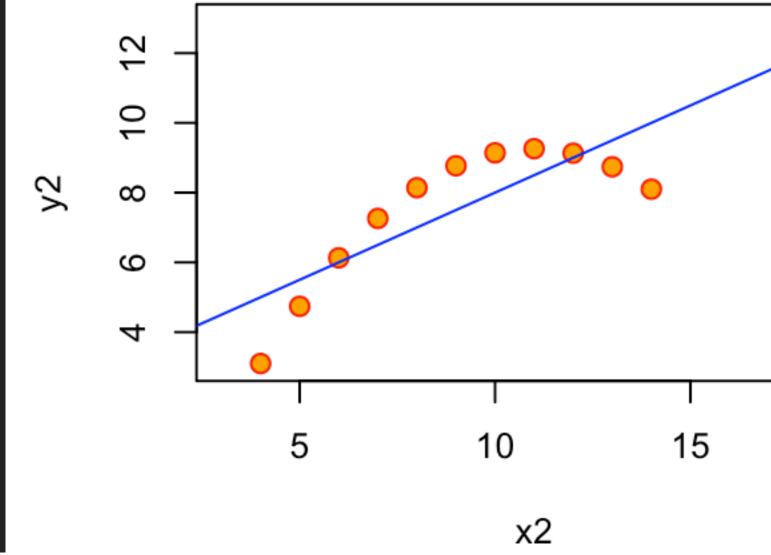


Contrast the example on the previous slide to the one we had earlier.

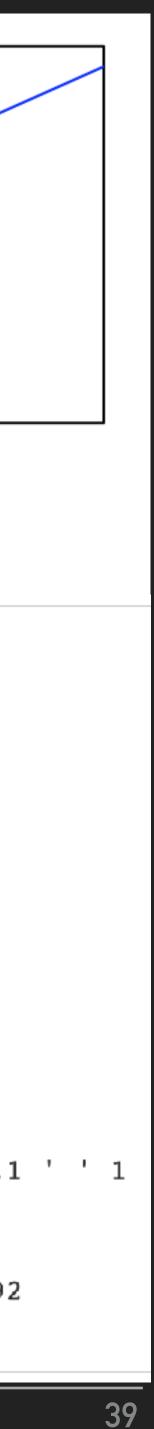


```
##
## Call:
## lm(formula = y1 ~ x1, data = anscombe)
##
## Residuals:
                 10 Median
##
       Min
                                    3Q
                                            Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                3.0001
                                     2.667 0.02573 *
## (Intercept)
                           1.1247
                            0.1179
##<mark>x1</mark>
                0.5001
                                     4.241 0.00217 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
```

Ouch!

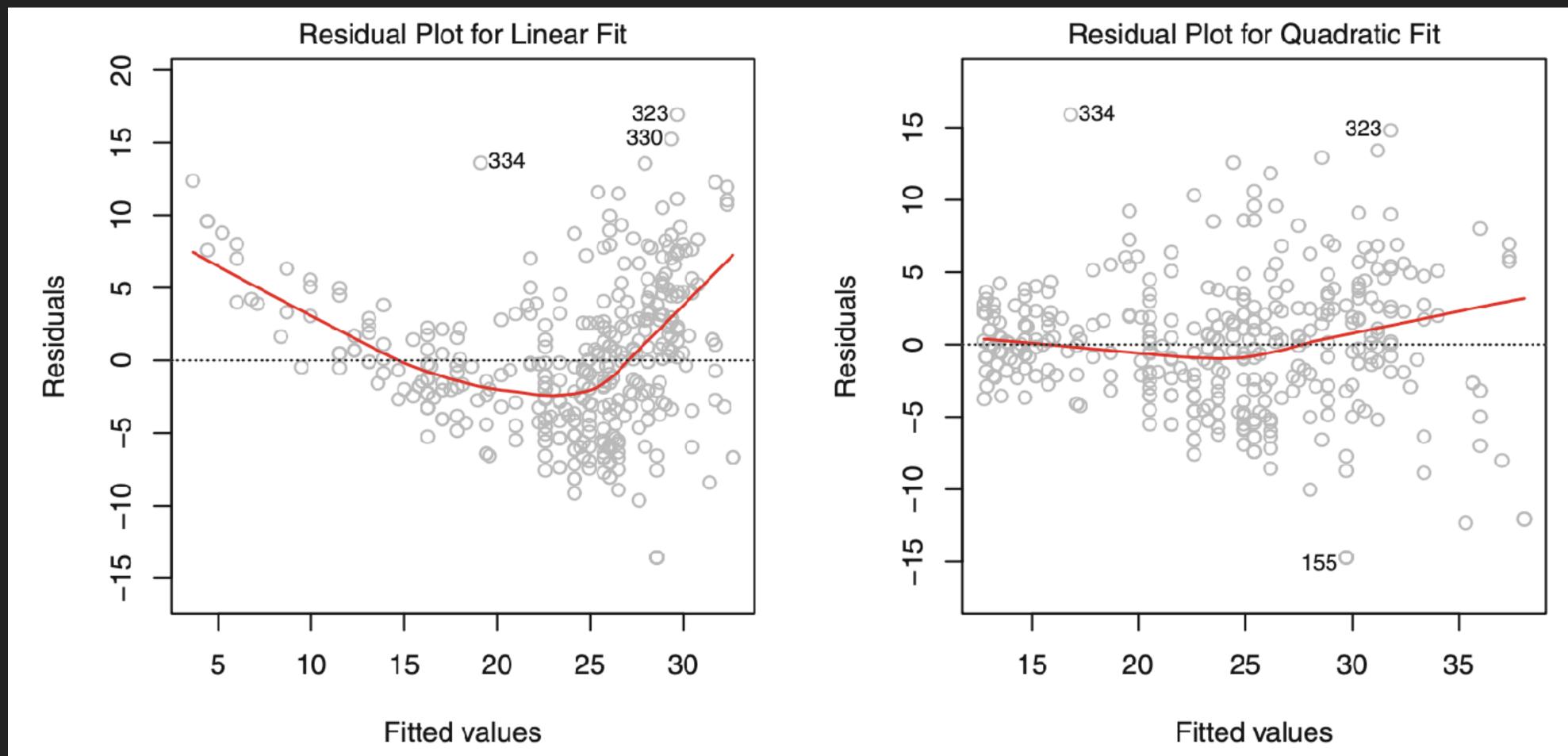


```
##
## Call:
## lm(formula = y2 \sim x2, data = anscombe)
##
## Residuals:
               1Q Median
##
      Min
                               3Q
                                      Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                            1.125
                 3.001
                                    2.667 0.02576 *
## x2
                            0.118
                                    4.239 0.00218 **
                 0.500
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
```

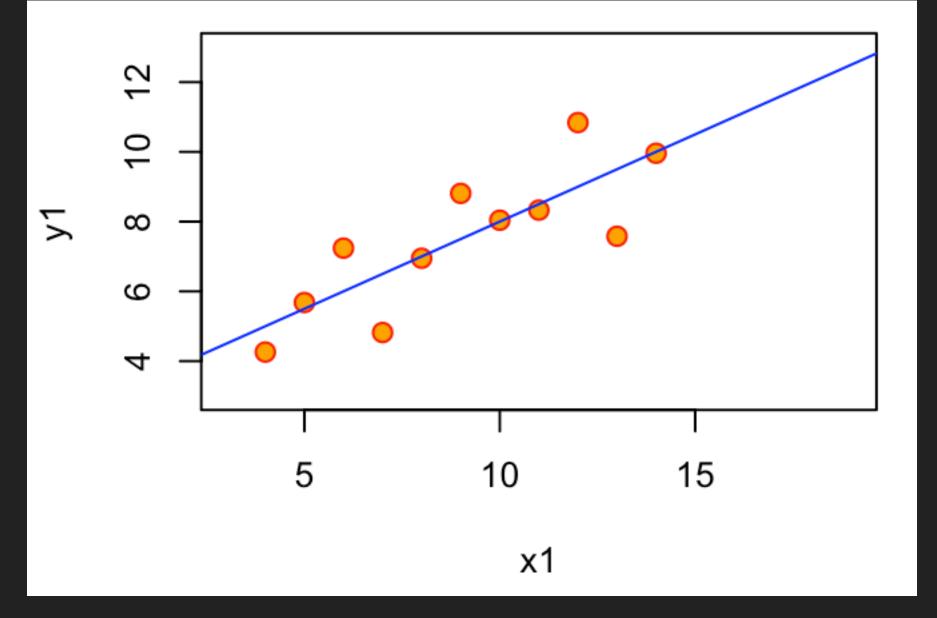


Another Example: Dealing With Non-Linearity

linear regression of mpg on horsepower



linear regression of mpg on horsepower and horsepower^2



Residuals vs Fitted

0

0

8

Fitted values

0

0

6

0₁₀

0

O

5

90

30

10

9

Remember This Example?

 \sim

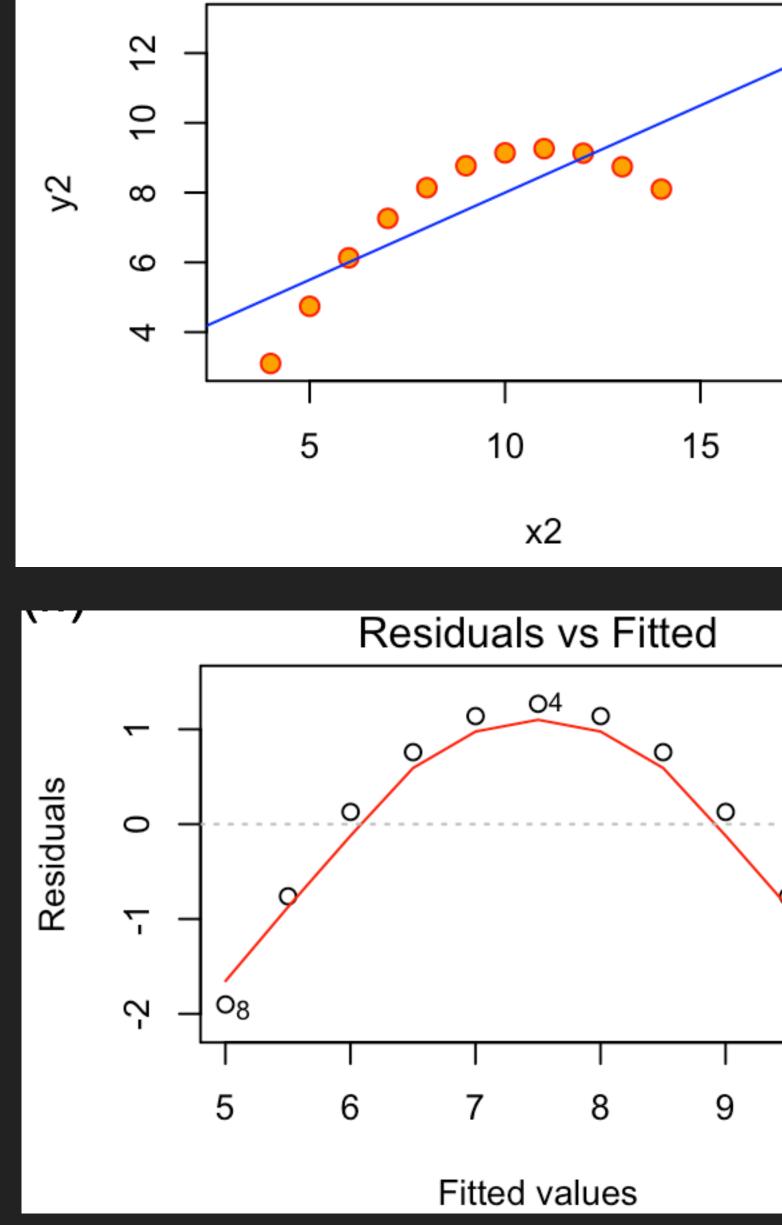
 $\overline{}$

0

 $\overline{}$

2

Residuals



Potential Problem: Correlation of Error Terms

Some causes:

- Time series: observations at adjacent time points will have positively correlated errors
- Also non time-series causes

Effect:

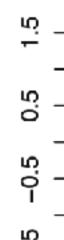
The estimated standard errors will tend to underestimate the true standard errors.

Plots of residuals from simulated time series data sets generated with differing levels of correlation between error terms for adjacent time points.

Residual

က

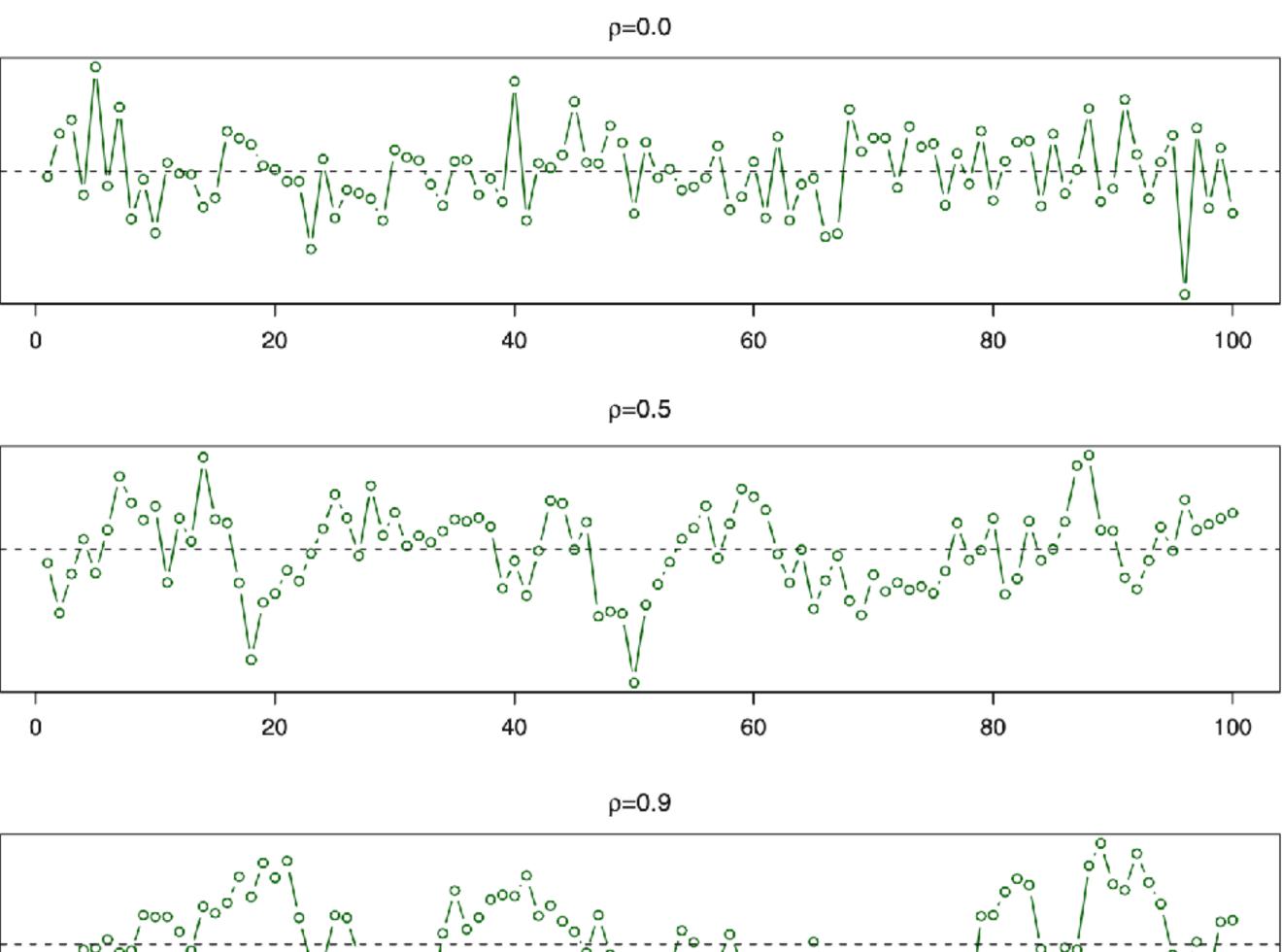
Residual



0 0

0

Residual



60

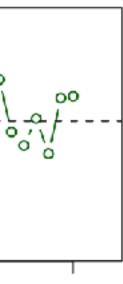
Observation

80

40

[17-803] Empirical Methods, Fall 2022

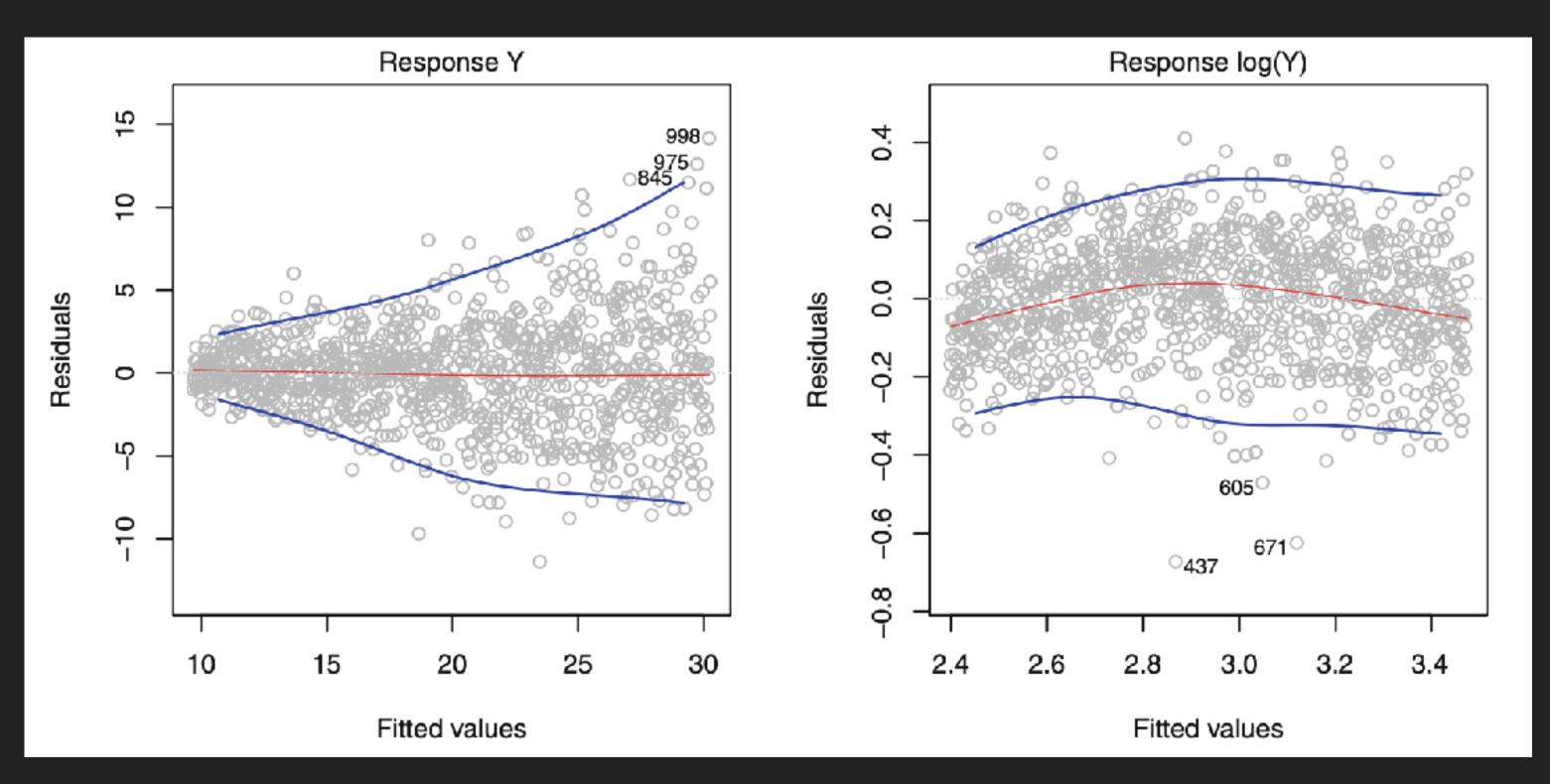
20



42

Potential Problem: Non-Constant Variance of Error Terms ("Heteroscedasticity")

The funnel shape indicates heteroscedasticity.

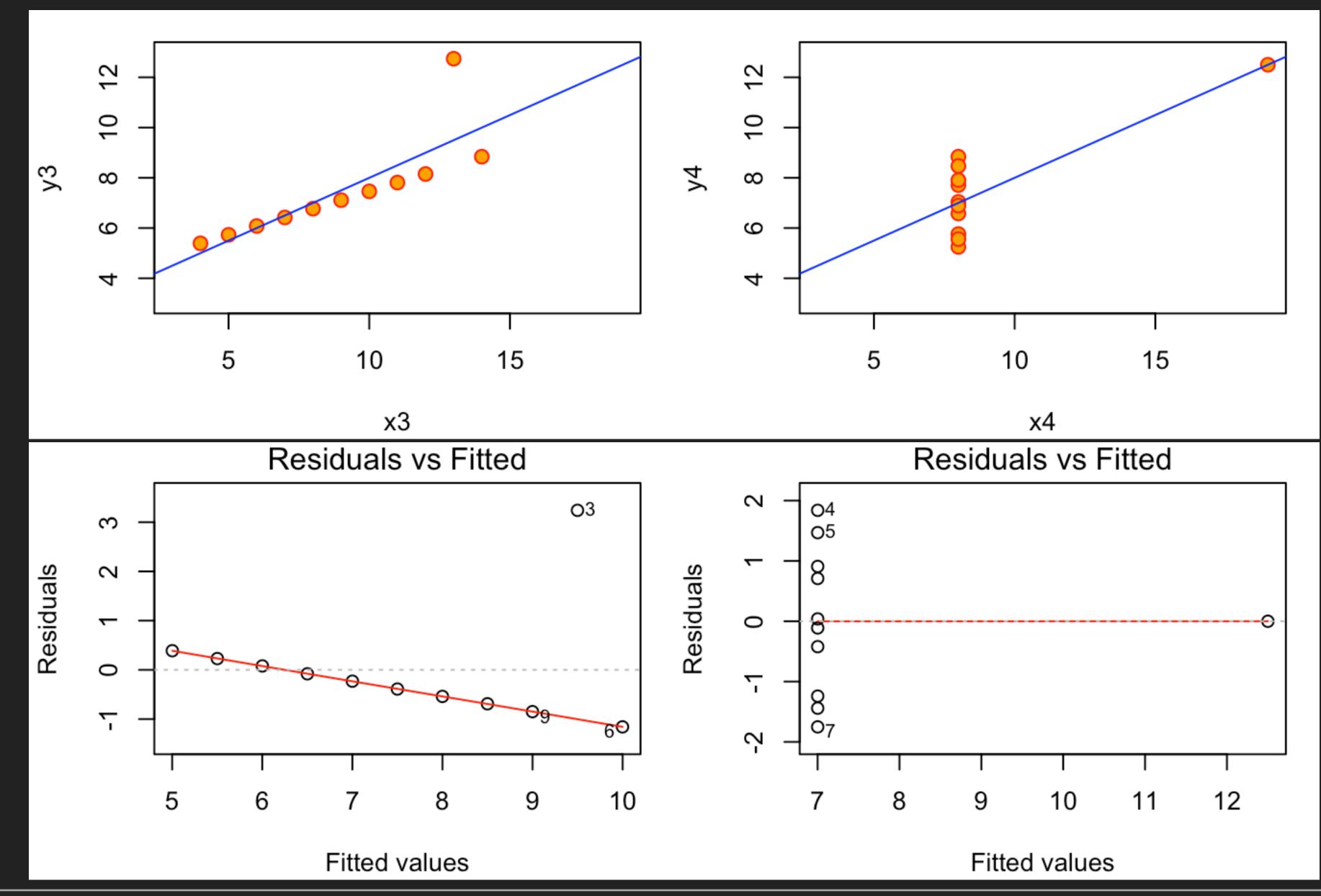


> Symptom: the variances of the error terms may increase with the value of the response.

The response has been log transformed, and there is now no evidence of heteroscedasticity.

Heteroscedasticity tends to produce p-values that are smaller than they should be.

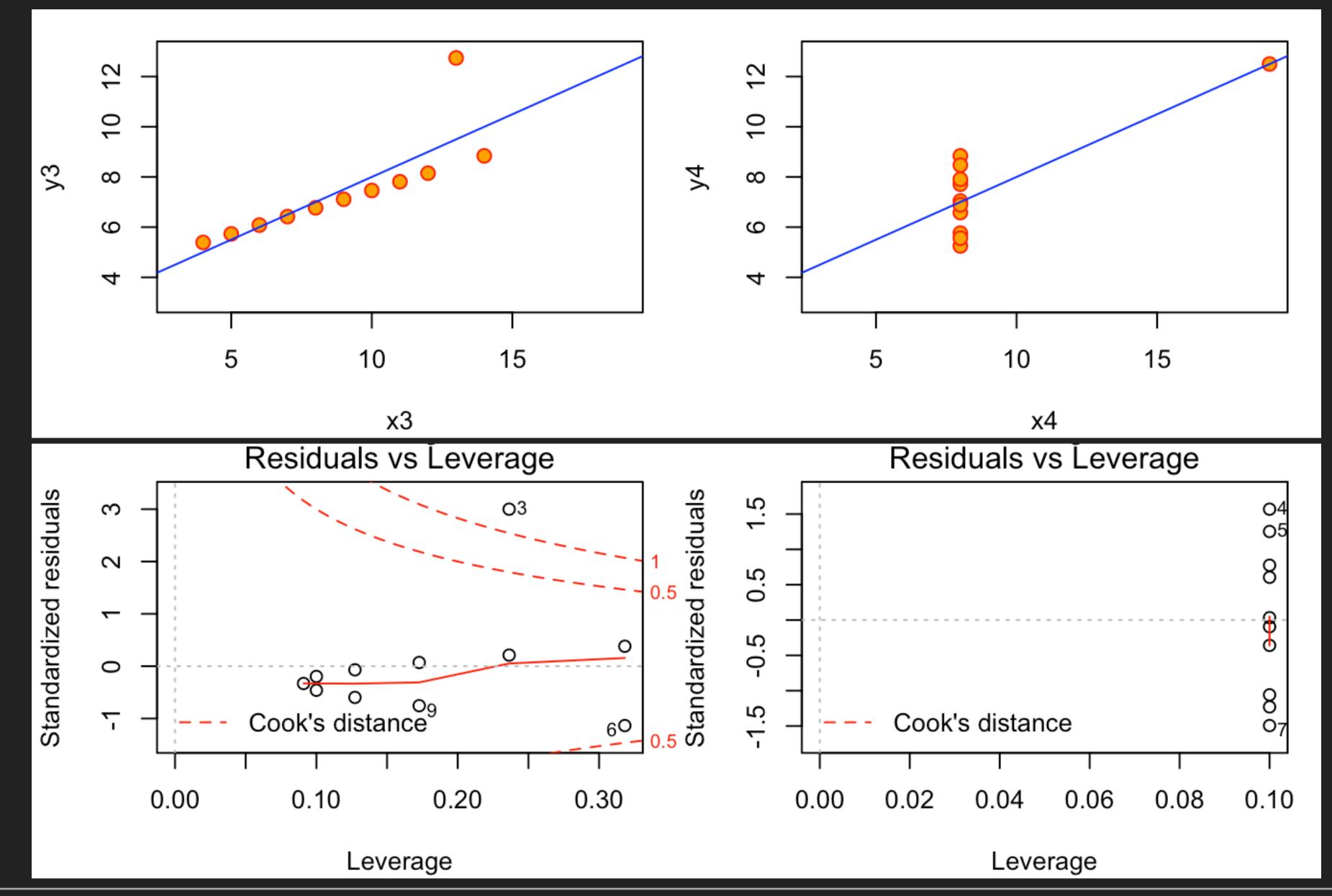
Potential Problems: Outliers and High Leverage Points



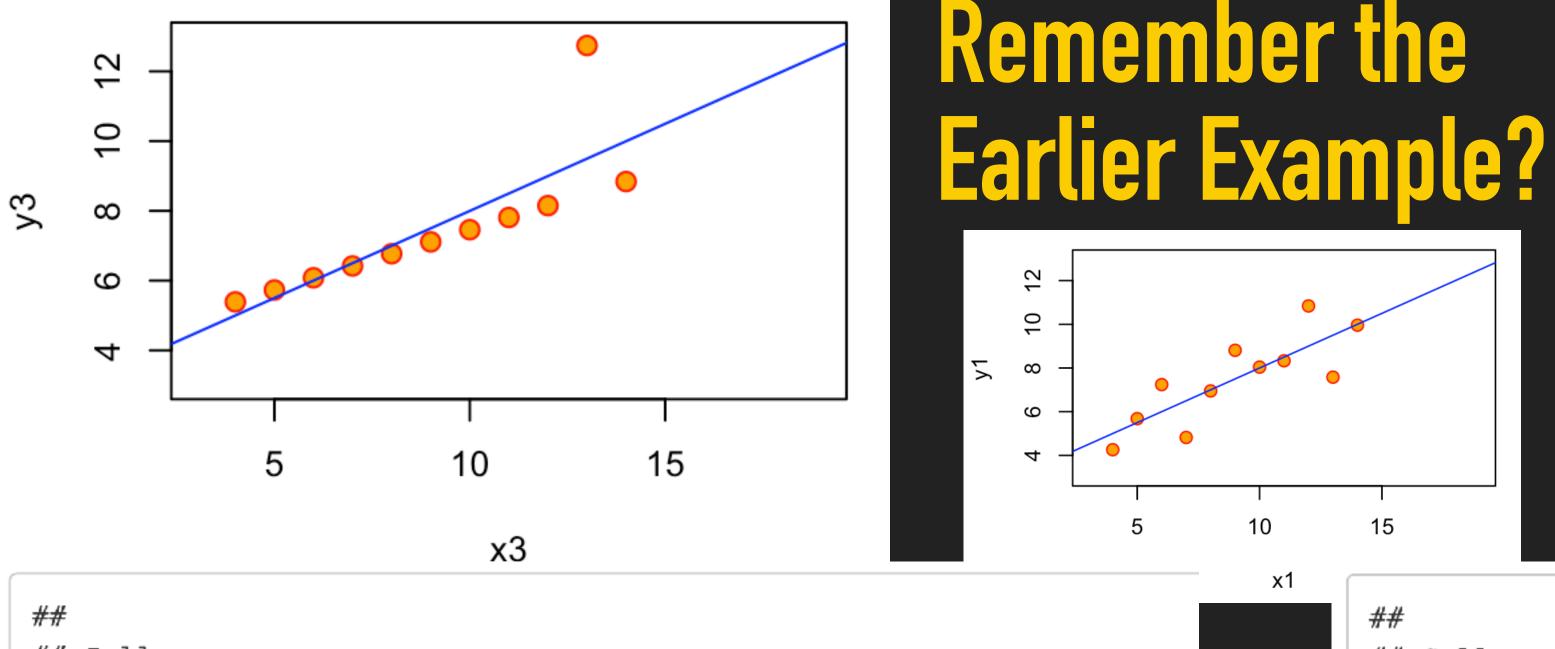
Carnegie Mellon University

[17-803] Empirical Methods, Fall 2022

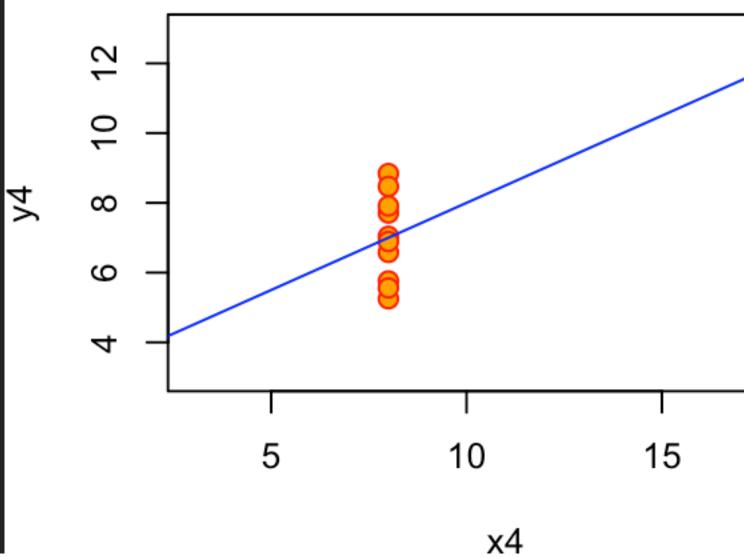
Potential Problems: Outliers and High Leverage Points



[17-803] Empirical Methods, Fall 2022

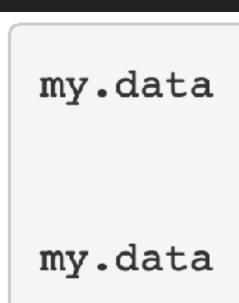


```
## Call:
## lm(formula = y3 - x3, data = anscombe)
##
## Residuals:
               10 Median
##
      Min
                               3Q
                                      Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025
                           1.1245
                                    2.670 0.02562 *
## x3
                0.4997
                           0.1179
                                    4.239 0.00218 **
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
```



Call: $## lm(formula = y4 \sim x4, data = anscombe)$ ## ## Residuals: 1Q Median Min 30 Max -1.751 -0.831 0.000 0.809 1.839 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## (Intercept) 3.0017 1.1239 ## 2.671 0.02559 * 0.1178 4.243 0.00216 ** ## 0.4999 $\mathbf{x4}$ ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.236 on 9 degrees of freedom ## Multiple R-squared: 0.6667 Adjusted R-squared: 0.6297 18 on 1 and 9 DF, p-value: 0.002165 ## F-statistic:

- Here's an extreme example of perfectly collinear data.
- By construction, x1 and x2 are exactly the same variable, and the outcome y is perfectly modeled as $y = x_1 + x_2$



my.data < - data.frame(y = c(12, 13, 10, 5, 7, 12, 15),x1 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5),x2 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5))

- Here's an extreme example of perfectly collinear data.
- By construction, x1 and x2 are exactly the same variable, and the outcome y is perfectly modeled as $y = x_1 + x_2$

my.data

But there's a problem... because the following are also true

$$y = 2x_1$$

 $y = 3x_1 - x_2$
 $y = -400x_1 + 402x_2$

<- data.frame(y = c(12, 13, 10, 5, 7, 12, 15), x1 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5),x2 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5))

- Here's an extreme example of perfectly collinear data.
- By construction, x1 and x2 are exactly the same variable, and the outcome y is perfectly modeled as $y = x_1 + x_2$

But there's a problem... because the following are also true

$$y = 2x_1$$

 $y = 3x_1 - x_2$
 $y = -400x_1 + 402x_2$

<- data.frame(y = c(12, 13, 10, 5, 7, 12, 15), x1 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5),x2 = c(6, 6.5, 5, 2.5, 3.5, 6, 7.5))

Effects:

- The model is unable to accurately distinguish between many nearly equally plausible linear combinations of collinear variables.
- This can lead to large standard errors on coefficients, and even coefficient signs that don't make sense.

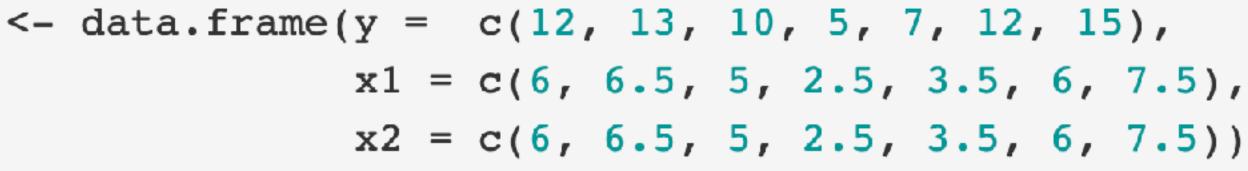
- Here's an extreme example of perfectly collinear data.
- By construction, x1 and x2 are exactly the same variable, and the outcome y is perfectly modeled as $y = x_1 + x_2$

my.data

But there's a problem... because the following are also true

$$y = 2x_1$$

 $y = 3x_1 - x_2$
 $y = -400x_1 + 402x_2$



Evaluate Collinearity library(car) vif(fit) # variance inflation factors sqrt(vif(fit)) > 2 # problem?

Activity: How To Address These Questions?

- Is there a relationship between advertising budget and sales?
- How strong is the relationship between advertising budget and sales?
- Which media contribute to sales?
- How accurately can we estimate the effect of each medium on sales?
- How accurately can we predict future sales?
- Is the relationship linear?
- Is there synergy among the advertising media?

... to be continued

Credits

- Graphics: Dave DiCello photography (cover)
- Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. O'Reilly Media.
- Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. In Seminars in Hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- Grolemund, G., & Wickham, H. (2018). R for data science.

