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https://twitter.com/DaveDiCello

Plan for Today

» Galton families leftovers (see last lecture slides)

» Time series analysis (seasonality/trend
decomposition)

Experimental and
Quasi-Experimental

» Segmented regression of interrupted time
series data Designs

for Generatizesiansal Inference

Shadish | Ceok | Campbell
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Time Series Analysis



Intro to time series analysis
Beer production in Australia

#install.packages("fpp")
library(fpp)
## Loading required package: forecast

## Registered S3 method overwritten by 'quantmod':
##  method from
##  as.zoo.data.frame zoo

## Loading required package: fma

## Loading required package: expsmooth
## Loading required package: lmtest

## Loading required package: zoo

##
## Attaching package: 'zoo'

## The following objects are masked from 'package:base':
#i#
## as.Date, as.Date.numeric

## Loading required package: tseries

data(ausbeer)
timeserie_beer = tail(head(ausbeer, 17*4+2),17*4-4)
plot(as.ts(timeserie_beer))
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Monthly airline passengers

#install.packages("Ecdat")
library(Ecdat)
## Loading required package: Ecfun

##
## Attaching package: 'Ecfun'

## The following object is masked from 'package:forecast':

##
## BoxCox

## The following object is masked from 'package:base':
#i#
## sign

##
## Attaching package: 'Ecdat'

## The following object is masked from 'package:datasets':

##
## Orange

data(AirPassengers)
timeserie_air = AirPassengers
plot(as.ts(timeserie_air))
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#install.packages("forecast”)
library(forecast)
trend_beer = ma(timeserie_beer, 4, T)
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plot(as.ts(timeserie_beer))
lines(trend_beer)
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plot(as.ts(trend_beer))
o
O —
— <
S
()
()
-QI
ko) o
Lo —
s o
-
Rt
8
0
© o
O —
™
[ [ [
1960 1965 1970
Time
trend_air = ma(timeserie_air, 12, T)

plot(as.ts(timeserie_air))
lines(trend_air)
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plot(as.ts(trend_air))
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detrend_beer = timeserie_beer - trend_beer
plot(as.ts(detrend_beer))
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detrend_air = timeserie_air / trend_air
plot(as.ts(detrend_air))
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m_beer = t(matrix( detrend_beer, 4))

seasonal_beer = colMeans(m_beer,
plot(as.ts(rep(seasonal_beer,16)))
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m_air = t(matrix( detrend_air, 12))
seasonal_air = colMeans(m_air, T)

plot(as.ts(rep(seasonal_air,12)))
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random_beer = timeserie_beer - trend_beer - seasonal_beer



plot(as.ts(random_beer))
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random_air = timeserie_air / (trend_air * seasonal_air)
plot(as.ts(random_air))
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recomposed_beer = trend_beer+seasonal_beer+random_beer
plot(as.ts(recomposed_beer))
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recomposed_air = trend_air*seasonal_air*random_air
plot(as.ts(recomposed_air))
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ts_beer = ts(timeserie_beer, 4)
decompose_beer = decompose(ts_beer, "additive")

plot(as.ts(decompose_beer$seasonal))
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plot(as.ts(decompose_beer$trend))
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plot(as.ts(decompose_beer$random))
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plot(decompose_beer)
Decomposition of additive time series
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ts_air = ts(timeserie_air, 12)

decompose_air = decompose(ts_air, "multiplicative")

10




plot(as.ts(decompose_air$seasonal))

as.ts(decompose_air$seasonal)
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plot(decompose_air)

Decomposition of multiplicative time series
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ts_beer = ts(timeserie_beer, 4)
stl_beer = stl(ts_beer, "periodic")
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seasonal_stl_beer <- stl_beer$time.series[,1]
trend_stl_beer <- stl_beer$time.series[,2]
random_stl_beer <- stl_beer$time.series[,3]

plot (ts_beer)
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Time

plot(as.ts(seasonal_stl_beer))
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plot(trend_stl_beer)
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plot(random_stl_beer)
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plot(stl_beer)
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Interrupted Time Series Analysis



Hospital Admissions for Acute Coronary Events

Sicily, 2002-2006
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Hospital Admissions for Acute Coronary Events

Sicily, 2002-2006

Counterfactual
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Interrupted Time Series Design

» One of the strongest quasi-experimental design to evaluate longitudinal
effects of time-delimited interventions.

» How much did an intervention change an outcome of interest?

» immediately and over time;
» instantly or with delay;
» transiently or long-term;

» Could factors other than the intervention explain the change?

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022



Modeling 101



Evaluating the Effects of an Intervention




Evaluating the Effects of an Intervention




Evaluating the Effects of an Intervention
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Evaluating the Effects of an Intervention
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segmented Regression Analysis of Interrupted Time
Series Data
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One more example:
The Florida “Stand your ground™ paper



Dehate Around “Stand Your Ground™ Laws

» Self-defense laws, removing the duty to
retreat and allowing the use of lethal force in
situations (inside and outside the home)
where an individual perceives a threat of
harm.

» Advocates:

» the increased threat of retaliatory violence deters
would-be burglars.

» Critics:

» weakening the punitive consequences of using force
may serve to escalate aggressive encounters.

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022

Box. States That Have Enacted “Stand Your Ground” Laws?

State Name (Year Original Law Signed)

Utah (1994)°

Florida (2005)
Alabama (2006)
Alaska (2006)
Arizona (2006)
Georgia (2006)
Indiana (2006)
Kansas (2006)
Kentucky (2006)
Louisiana (2006)
Michigan (2006)
Mississippi (2006)
Oklahoma (2006)
South Carolina (2006)
South Dakota (2006)
Tennessee (2007)
Texas (2007)

West Virginia (2008)
Montana (2009)
Nevada (2011)

New Hampshire (2011)
North Carolina (2011)

Pennsylvania (2011)




Box. States That Have Enacted “Stand Your Ground” Laws?

Florida Natural Experiment

State Name (Year Original Law Signed)

Utah (1994)°
. . . Florida (2005)
» Florida was the first state to implement a Alabama (2006)
. Alaska (2006)
stand your g.round law, removing the duty to o (2006
retreat principle. Georgia (2006)
Indiana (2006)
» ldea: Use the years that have elapsed since Kansas (2006)
the enactment of the Florida law to assess its o e
impact on rates of homicide and homicide by Michigan (2006)
fl rearm Mississippi (2006)

Oklahoma (2006)
South Carolina (2006)
South Dakota (2006)
Tennessee (2007)
Texas (2007)

West Virginia (2008)
Montana (2009)
Nevada (2011)

New Hampshire (2011)
North Carolina (2011)

Pennsylvania (2011)
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Potential Limitations of Interrupted Time Series Designs

» The possibility that other factors that occur simultaneously may distort
estimates of intervention effects, e.g.,

» national changes in social or economic variables (e.g., a recession)
» events that have a profound and lasting impact on society (e.g., natural disasters).

» Study design features to address limitations:

» analysis of homicide rates in 4 comparison states (New York, New Jersey, Ohio, and Virginia),
» analysis of control outcomes (suicide and suicide by firearm).

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022
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Data Sources

» Monthly death totals for Florida between Jan 1999 and Dec 2014,
from CDC.

» Classified cases by:

» place of occurrence (within or outside the State of Florida),
» cause of death (homicide or suicide),

» mechanism (firearms or other means), and

» month of occurrence.

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022
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Data Analysis

» Evaluate whether post-intervention trends in homicide and homicide by
firearm in Florida differed significantly from pre-intervention trends.

» Segmented quasi-Poisson regression analysis to analyze trends in both

periods and estimate an effect size, taking underlying trends into account.

» Because of time sequencing of data points used in time series analysis,

residual autocorrelation can lead to the violation of regression
assumptions.

» Generate robust standard errors (using a sandwich estimator) to produce more
conservative estimates of uncertainty.

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022
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Homicide Rates in Florida and Comparison States

1.0-

Florida
Comparison states

O
Co
|

O
@)
|

O
N
|

()
()
()
()
()
|
| -
D
Q.
Q
e
ge]
(a-

©
ND
|

1999 2001 2003 2005 2007 2009 2011 2013
Year




Homicide by Firearm Rates in Florida and Comparison States
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Discussion

» Since Florida’s stand your ground law took effect in October 2005, rates of
homicide (+24.4% through 2014) and homicide by firearm (+31.6%) in the
state have significantly increased.

» These increases appear to have occurred despite a general decline in
homicide in the United States since the early 1990s.

» In contrast, rates of homicide and homicide by firearm did not increase in
states without a stand your ground law (New York, New Jersey, Ohio, and
Virginia), or for either suicide or suicide by firearm.

» Findings support the hypothesis that increases in the homicide and
homicide by firearm rates in Florida are related to the stand your ground
law.

Carnegie Mellon University [17-803] Empirical Methods, Fall 2022
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