Empirical Methods (17-803)

Introduction to Social Networks Fall 2022

17 November 2022
Patrick Park (patpark@cmu.edu)

Benefits of Network Diversity

Egonetwork level
One's diverse egonetwork can be more beneficial

Subgroup level
Team with diverse members perform better

Network level
Network with diverse connections are more robust

Today is about the local level (egonetwork and tie level)

Two Related Concepts

Network Bridging

- A shortcut that connects otherwise separated social contexts.
- Bridging ties are the conduits through which non-redundant information can flow through.

Network Brokerage

- The separation among one's alters
- Alters likely come from different social groups

Two Related Concepts

Silk road was a socio-cultural, geographical bridge

Bridging and brokering are closely related ideas.

From a community's perspective, a bridging tie that connects to a far away community can bring diversity to the community (ideas, information, etc.)

Two Related Concepts

An individual brokers different communities and groups.

Information and other resources flow through the individual from one group to another

An individual bridges/brokers different communities

Network Bridging

Dissertation: Getting a Job

Mark Granovetter

- Strength of weak ties: explaining the puzzling finding of job information acquisition through acquaintances, not close friends
- Benefits bridging to individual and group

One of the most cited papers in the social sciences

Network Brokerage

Extended the idea of bridging ties

- From ties to nodes
- Emphasis on individual's agency
- Benefits that accrue to individual

Ron Burt

Bridging Ties

- Tie strength: interaction frequency, reciprocity, emotional intensity
- Forbidden triad: Due to people's desire for cognitive balance, one is likely to form a strong relationship with a close friend's close friend.
- Hence, a triad with only two "strong" ties are not likely. Because strong ties have the tendency to close the triad, they are not likely to be bridging ties.

Bridging Ties

- On the other hand, acquaintances, or weak ties do not have embedding tendency

- There is much less psychological need for cognitive balance
- Weak ties interact infrequently, so less chance to form common neighbors.
- Hence, Weak ties are more likely to be bridges.
- Key assumption:

Strong ties are embedded, weak ties are bridging

Local Bridges

Granovetter created a measure of bridge length \rightarrow "Local bridge of degree n "

Bridge length of the A-B tie:

- second shortest path length

This measure requires global network information, unmeasurable before internet

Weakness of ties was a good proxy for bridging ties

Long-Range Ties Are Rare

Granovetter would not have discovered globally long bridging ties

Weak Ties and Getting a Job

getting a job

- From his dissertation work at Harvard, Granovetter discovers that people tend to find new job opportunities through acquaintances rather than close friends.

Continuing Debates

Getting a job with weak ties

A Facebook study finds that a person is most likely to eventually work with a weak tie because weak ties collectively make up most of a person's social network. However, strengthening an existing tie increases the probability that one will work with that specific friend.
(Gee et al. 2017)

A Linkedln study finds that weak ties are effective for job transmissions, but diminishing returns to tie weakness.
(Rajkumar et al. 2022)

Continuing Debates

Bridging ties are not necessarily weak

Brokerage

James vs. Robert

How are their positions different? Who spans more structural holes?

Group B
Group C

Group D
Network Constraint
$\left(C=\Sigma_{j} c_{i j}=\Sigma_{j}\left[p_{i j}+\Sigma_{q} p_{i q} p_{q j}\right]^{2}, i, j \neq q\right)$
person 2: $.265=[1 / 3.5+0]^{2}+[.5 / 3.5+0]^{2}+[1 / 3.5+0]^{2}+[1 / 3.5+0]^{2}$
person 3: . $402=[.25+0]^{2}+[.25+.084]^{2}+[.25+.091]^{2}+[.25+.084]^{2}$
Robert: $.148=[.077+0]^{2}+[.154+0]^{2}+[.154+0]^{2}+[.154+0]^{2}+[.154+0]^{2}+[.154+0]^{2}+[.154+0]^{2}$

Network Constraint

$$
c_{i j}=\left(p_{i j}+\sum_{q} p_{i q} p_{q j}\right)^{2}
$$

i's dependence on j : Proportion of direct communication with j and the sum of the indirect communications with j through common neighbors, q

$$
p_{i j}=\frac{z_{i j}}{\sum_{q} z_{i q}} \quad \begin{aligned}
& \text { communication with } \mathrm{j} \text { relative to the sum of } \mathrm{i} \text { 's total } \\
& \text { communications }
\end{aligned}
$$

$$
C_{i}=\sum_{j} c_{i j} \quad i \text { 's total constraint is the sum of } i \text { 's pairwise constraints }
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size, density, and hierarchy.

$$
c_{i j}=\left(p_{i j}+\sum_{q} p_{i q} p_{q j}\right)^{2}
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size, density, and hierarchy.

$$
\begin{aligned}
& c_{i j}=\left(p_{i j}+\sum_{q} p_{i q} p_{q j}\right)^{2} \\
& c_{i j}=p_{i j}{ }^{2}+2 p_{i j} \sum_{q} p_{i q} p_{q j}+\sum_{q} p_{i q} p_{q j}{ }^{2}
\end{aligned}
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size, density, and hierarchy.

$$
\begin{aligned}
& c_{i j}=\left(p_{i j}+\sum_{q} p_{i q} p_{q j}\right)^{2} \\
& c_{i j}=p_{i j}^{2}+2 p_{i j} \sum_{q} p_{i q} p_{q j}+\sum_{q} p_{i q} p_{q j}{ }^{2} \\
& c_{i j}=p_{i j}^{2}+2\left(p_{i j} p_{i_{1} p_{1}} p_{q_{1} j}+p_{i j} p_{i q_{2}} p_{q_{2} j}+\cdots\right)+\left(p_{i q_{1}} p_{q_{1 j} j}+p_{i q_{2}} p_{q_{2} j} \ldots\right)
\end{aligned}
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size (i's degree), density, and hierarchy.

$$
c_{i j}=p_{i j}^{2}+2\left(p_{i j} p_{i q_{1}} p_{q_{1} j}+p_{i j} p_{i q_{2}} p_{q_{2} j}+\cdots\right)+\left(p_{i q_{1}} p_{q_{1} j}+p_{i q_{2}} p_{q_{2} j} \ldots\right)
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size (i's degree), density, and hierarchy.

$$
c_{i j}=p_{i j}^{2}+2\left(p_{i j} p_{i q_{1}} p_{q_{1} j}+p_{i j} p_{i q_{2}} p_{q_{2} j}+\cdots\right)+\left(p_{i q_{1}} p_{q_{1} j}+p_{i q_{2}} p_{q_{2} j} \ldots\right)
$$

$$
p_{i j}=\frac{\int_{z_{i j}}^{\text {size }}}{\sum_{q} z_{i q}}
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size (i's degree), density, and hierarchy.

$$
c_{i j}=p_{i j}^{2}+2\left(p_{i j} p_{i q_{1}} p_{q_{1} j}+p_{i j} p_{i q_{2}} p_{q_{2} j}+\cdots\right)+\left(p_{i q_{1}} p_{q_{1} j}+p_{i q_{2}} p_{q_{2} j} \ldots\right)
$$

Network Constraint

Network constraint can be interpreted as a composite measure consisting of size (i's degree), density, and hierarchy.

$$
c_{i j}=p_{i j}^{2}+2\left(p_{i j} p_{i q_{1}} p_{q_{1} j}+p_{i j} p_{i q_{2}} p_{q_{2} j}+\cdots\right)+\left(p_{i q_{1}} p_{q_{1} j}+p_{i q_{2}} p_{q_{2} j} \ldots\right)
$$

Structural Holes and Good Ideas

Vision Advantage Hypothesis

People whose networks span structural holes have early access to diverse, often contradictory, information and interpretations, which give them a competitive advantage in seeing good ideas. Hence, brokerage should be associated with good ideas.

Structural Holes and Good Ideas

Structural Holes and Good Ideas

		$\begin{gathered} 1 \\ \text { Salar } \end{gathered}$		$\begin{gathered} 2 \\ \text { Salar } \end{gathered}$		$\begin{gathered} 3 \\ \text { Evalua } \end{gathered}$	tion	$\begin{gathered} 4 \\ \text { Promot } \end{gathered}$	
	Manager 1	-31,099**	$(2,882)$	-35,707**	$(3,498)$	-. 973	(.678)	. 689	(.670)
	Manager 2	$-16,652^{* *}$	$(2,745)$	-19,892**	$(3,479)$	-. 863	(.631)	1.165	(.648)
	Manager 3 (reference)								
	Sr. manager	19,638**	$(3,782)$	15,484**	$(4,143)$. 116	(.843)	-. 635	(.885)
	Executive	65,394**	$(4,522)$	61,930**	$(4,835)$. 423	(1.01)	. 221	(1.08)
	Purchasing	754	$(1,351)$	1,811	$(1,884)$. 410	(.313)	. 478	(.345)
	Age	338**	(52)	300**	(71)	$-.085^{* *}$	(.013)	-.084**	(.013)
	Bachelor	1,610	$(1,003)$	200	$(1,401)$	-. 211	(.237)	. 118	(.240)
	Graduate	734	(864)	-451	$(1,155)$	-. 208	(.203)	. 182	(.204)
	Hightech	3,516**	(880)	3,150*	$(1,189)$. 087	(.209)	. 162	(.210)
	Lowtech	$-6,927 * *$	$(1,481)$	-6,607*	$(2,375)$	-. 351	(.342)	-. 409	(.378)
	Urban 1	3,613**	$(1,046)$	3,947**	$(1,456)$. 423	(.247)	-. 152	(.252)
	Urban 2	5,049**	$(1,010)$	5,585*	$(1,427)$	-. 564	(.238)	-. 052	(.243)
	Network constraint	-7	(25)	-1	(38)	$-.014^{* *}$	(.004)	$-.022^{* *}$	(.006)
	Mgr2 \times constraint	-19	(35)	-47	(58)	. 004	(.008)	-. 008	(.009)
Constraint is bad especially for leadership	Mgr3 \times constraint $\ldots .$.	-47	(38)	-159*	(59)	-. 007	(.009)	. 003	(.009)
	$\begin{array}{\|l\|} \hline \text { SrMgr } \times \\ \text { constraint } \end{array}$	-214*	(75)	-216*	(84)	-. 005	(.017)	. 010	(.019)
	```Executive x constraint```	$-681^{* *}$	(124)	$-697 * *$	(132)	$-.011$	(.028)	. 024	(.030)
	N .....................	673		398		673		638	

## Brokerage



Brokerage positions are beneficial beyond organizations

- United Kingdom phone data
- Average constraint score at phone area code level correlates with the area's economic development


## Brokerage

## Critique to structural hole theory: Simmelian Ties



Constraints on A in Figure 1.c: must satisfy two cliques' sets of norms: $S_{1} \cap \mathrm{Sz}$

## Brokerage

## Critique to structural hole theory: Simmelian Ties



Constraints on A in Figure 1.c: must satisfy two cliques' sets of norms: S1กS2


## Brokerage

## Critique to structural hole theory: Simmelian Ties



Constraints on A in Figure 1.c: must satisfy two cliques' sets of norms: $S_{1} \cap \mathrm{Sz}$
(Krackhardt, 1999)


Most
Constrained

Figure 2.6


Somewhat Constrained, but only by 1 Clique

Most Constrained, must satisfy 2 Cliques

## Predicting Romantic Relationships

## Backstrom and Kleinberg (2014)

Textbook case of combining:

- deep consideration about the nature of the tie (romantic) and
- corresponding metrics construction


## Nature of the Romantic Tie

Recall from Wellman and Wortley

Intimate ties (psychology):

- a sense of intimacy, voluntary investment in the tie and companionship
- an interest in being together as much as possible through interactions in multiple social contexts over a long period
- a sense of mutuality and support for partner's needs


## Metric Construction

## Network dispersion:

A new measure that extends the observations and intuition that relationship psychologists made about intimate relationships.
"... the links to a person's relationship partner or other closest friends may have lower embeddedness, but they will often involve mutual neighbors from several different foci, reflecting the fact that the social orbits of these close friends are not bounded within any one focus."

## Operationalizing the Intuition



$$
\operatorname{disp}(u, v)=\sum_{s, t \in C_{u v}} d_{v}(s, t)
$$

$d_{v}(s, t)=\left\{\begin{array}{l}1, \text { if } s \text { and } t \text { are not linked and have } 0 \text { common neighbors } \\ 0, \text { otherwise }\end{array}\right.$

## Explaining Network Structures



Network scientists employ random graphs as baseline

Divergence of observed network from baseline offers clues to its structure

## Explaining Network Structures



The clue: Absence of four cycles in the high school network, relative to random baseline

Authors "theorize" behavioral reasons why the cycles are absent


## Questions?

