:

e i e

st
s X
v

B

D il

T

&
-

i

https://twitter.com/DaveDiCello

Outline for Today

» Two readings for Thursday

» Sign-up sheet
» Reminder: shared GDrive folder with all readings (CMU login)

» Literature reviews

» Why and how we do them
» Common types
» Dissecting two examples

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

https://docs.google.com/document/d/1EWeEI7uJDJ_wC64nMUs3tsRHo6ZPhEV8LAY-Ce2OSik/edit?usp=sharing
https://drive.google.com/drive/folders/1lSOQlbw-cRmT47_itpIJkTZua_IASNgB?usp=sharing

Literature Review

» Lingard, L. (2015). Joining a conversation: the problem/gap/hook heuristic. Perspectives on
Medical Education, 4(5), 252-253.

» Lingard, L. (2018). Writing an effective literature review. Perspectives on Medical Education,
7(2), 133-135.

» Justin Zobel, Writing for Computer Science (3rd Edition). Springer, 2015

A Literature Review Helps You Choose a Research Topic

Can it be studied? vs Should it be studied?

» Does it add to the body of knowledge?

» Who else besides you would care about results?

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

A Literature Review Serves Multiple Purposes

» Report what is known about your topic.

» Share with reader results from related studies
» Benchmark for comparing results

» Main purpose: identity what remains unknown.

» Relate your study to literature, filling in gaps
» Direction for your research questions and hypotheses
» Framework for establishing the importance of your study

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

Several Forms of Literature Review Are Possible

» Integrate what others have done and said
» Criticize prior work
» Build bridges between related topics

» Identify the central issues in a tield

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

Side Effect: Lit Review Pushes You To Articulate Your Contributions

» Does your project:

» Address a new topic?

» Use a new data collection method?
» Extend the discussion?

» Refine / extend a theory?

» Replicate a study in a new situation?
4

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

Activity: Read and Discuss the Lit Reviews in One of the Following Papers

Read up to “DESIGNING Read up to “METHODOLOGY
RECOMMENDERS FOR TWITTER” AND DATA SOURCES" on page

on p. 1187 302 Iscussion points:

CHI 2010: Understanding Comments

April 10-15, 2010, Atlanta, GA, USA

Short and Tweet: Experiments on Recommending Content
from Information Streams
Jilin Chen*, Rowan NairnT, Les Nelson*, Michael BernsteinA, Ed H. Chi’

" University of Minnesota " Palo Alto Research Center A MIT CSAIL
200 Union Street SE, 3333 Coyote Hill Road, Palo Alto, 32 Vassar Street, Cambridge,
Minneapolis, MN 55455 CA 94304 MA 02139
jilin@cs.umn.edu {rnairn, Inelson, echi}@parc.com msbernst@mit.edu

ABSTRACT

More and more web users keep up with newest information
through information streams such as the popular micro-
blogging website Twitter. In this paper we studied content
recommendation on Twitter to better direct user attention.
In a modular approach, we explored three separate
dimensions in designing such a recommender: content
sources, topic interest models for users, and social voting.
We implemented 12 recommendation engines in the design
space we formulated, and deployed them to a recommender
service on the web to gather feedback from real Twitter
users. The best performing algorithm improved the
percentage of interesting content to 72% from a baseline of
33%. We conclude this work by discussing the implications
of our recommender design and how our design can
generalize to other information streams.

Author Keywords
Information stream, recommender system, topic modeling,
social filtering.

ACM Classification Keywords
H.5.3: Group and Organization Interfaces.

General Terms
Algorithms, Experimentation

INTRODUCTION

Information streams have recently emerged as a popular
means of information awareness. By information streams
we are referring to the general set of Web 2.0 feeds such as
status updates on Twitter and Facebook, and news and
entertainment in Google Reader or other RSS readers.
Although they have notable differences, the above
examples share two key commonalities: (1) they deliver to
each user a stream of text entries over time that are
personalized to the user’s subscriptions, and (2) they allow
users to explicitly interact with each other. As information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific pe sion and/or a fee.

CHI 2010, April 10-15, 2010, Atlanta, Geo

Copyright 2010 ACM 978-1-60558-929-9/

distribution platforms, Twitter, Facebook and Google
Reader have all enjoyed great popularity and are drawing
ever more new users into them. For instance, according to
compete.com’s traffic statistics, the total number of people
visiting Twitter has been rising from about 6 million per
month in January 2009 to over 23 million per month as of
July 2009 (http://siteanalytics.compete.com/twitter.com/).

With an abundance of information comes the scarcity of
attention [20]. Two user needs arise from attention scarcity:

filtering and discovery. On the one hand, a user’s stream

will often receive hundreds of items each day, much beyond
what users have time to process. Users would like to filter
the stream down to those items that are indeed of interest.
On the other hand, many users also want to discover useful
content outside their own streams, such as interesting URLs
on Twitter posted by friends of friends, or relevant blogs in
Google Reader that are subscribed by other friends. This
discovery task is formidable, given the vast amount of
information that are disseminated daily through information
stream services.

One approach is to proactively recommend interesting
content to users so as to better direct their attention. Google
Reader has implemented a discovery feature that
recommends interesting RSS feeds, and a number of third-
party websites provide filtering or recommendation services
for Twitter users. So far there has been little discussion
regarding the effectiveness of such solutions, and little is
known regarding the design space of information stream
recommenders.

As a domain for recommendation, information streams have
three interesting properties that distinguish them from other
well-studied domains:

(1) Recency of content: Content in the stream is often
considered interesting only within a short time of first being
published. As a result, the recommender may always be in a
“cold start” situation [19], i.e. there is not enough data to
generate a good recommendation.

(2) Explicit interaction among users: Unlike other domains
where users interact with the system as isolated individuals,
with information stream users explicitly interact by
subscribing to others’ streams or by sharing items.

Two Case Studies of Open Source Software
Development: Apache and Mozilla

AUDRIS MOCKUS

Avaya Labs Research
ROY T FIELDING

Day Software

and

JAMES D HERBSLEB
Carnegie Mellon University

According to its proponents, open source style software development has the capacity to compete
successfully, and perhaps in many cases displace, traditional commercial development methods. In
order to begin investigating such claims, we examine data from two major open source projects, the
Apache web server and the Mozilla browser. By using email archives of source code change history
and problem reports we quantify aspects of developer participation, core team size, code ownership,
productivity, defect density, and problem resolution intervals for these OSS projects. We develop
several hypotheses by comparing the Apache project with several commercial projects. We then
test and refine several of these hypotheses, based on an analysis of Mozilla data. We conclude with
thoughts about the prospects for high-performance commercial/open source process hybrids.

Categories and Subject Descriptors: D.2.9 [Software Engineering|— Life cycle, Productivity, Pro-
gramming teams, Software process models, Software Quality assurance, Time estimation; D.2.8
[Software Engineeringl— Process metrics, Product metrics; K.6.3 [Software Management]—
Software development, Software maintenance, Software process

General Terms: Management, Experimentation, Measurement, Human Factors

Additional Key Words and Phrases: Open source software, defect density, repair interval, code
ownership, Apache, Mozilla

This work was done while A. Mockus and J. D. Herbsleb were members of software Production
Research Department at Lucent Technologies’ Bell Laboratories.

This article is a significant extension to the authors’ paper, “A case study of open source software
development: the Apache server,” that appeared in the Proceedings of the 22nd International Con-
ference on Software Engineering, Limerick, Ireland, June 2000 (ICSE 2000), 263-272.

Authors’ addresses: A. Mockus, Avaya Labs Research, 233 Mt. Airy Road, Basking Ridge, NJ 07920;
email: audris@mockus.com; R.T. Fielding, Day Software, 2 Corporate Plaza, Suite 150, Newport
Beach, CA 92660-7929; email: fielding@apache.org; J.D. Herbsleb, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA 15213; email: jherbsleb@acm.org.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 1049-331X/02/0700-0309 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002, Pages 309-346.

n the state of knowledge:

How much prior work was
there?

What kind of questions is the
paper addressing?

n the lit review:

What is “the problem” the paper
is addressing?

What is the knowledge gap
being addressed?

Who cares about the results?
How is the literature organized?

Activity: Read Beginning of “Iwo Case Studies..” By Mockus Et Al

Two Case Studies of Open Source Software
Development: Apache and Mozilla

AUDRIS MOCKUS

Avaya Labs Research
ROY T FIELDING

Day Software

and

JAMES D HERBSLEB
Carnegie Mellon University

According to its proponents, open source style software development has the capacity to compete
successfully, and perhaps in many cases displace, traditional commercial development methods. In
order to begin investigating such claims, we examine data from two major open source projects, the
Apache web server and the Mozilla browser. By using email archives of source code change history
and problem reports we quantify aspects of developer participation, core team size, code ownership,
productivity, defect density, and problem resolution intervals for these OSS projects. We develop
several hypotheses by comparing the Apache project with several commercial projects. We then
test and refine several of these hypotheses, based on an analysis of Mozilla data. We conclude with
thoughts about the prospects for high-performance commercial/open source process hybrids.

Categories and Subject Descriptors: D.2.9 [Software Engineeringl— Life cycle, Productivity, Pro-
gramming teams, Software process models, Software Quality assurance, Time estimation; D.2.8
[Software Engineeringl— Process metrics, Product metrics; K.6.3 [Software Management]—
Software development, Software maintenance, Software process

General Terms: Management, Experimentation, Measurement, Human Factors

Additional Key Words and Phrases: Open source software, defect density, repair interval, code
ownership, Apache, Mozilla

This work was done while A. Mockus and J. D. Herbsleb were members of software Production
Research Department at Lucent Technologies’ Bell Laboratories.

This article is a significant extension to the authors’ paper, “A case study of open source software
development: the Apache server,” that appeared in the Proceedings of the 22nd International Con-
ference on Software Engineering, Limerick, Ireland, June 2000 (ICSE 2000), 263-272.

Authors’ addresses: A. Mockus, Avaya Labs Research, 233 Mt. Airy Road, Basking Ridge, NJ 07920;
email: audris@mockus.com; R.T. Fielding, Day Software, 2 Corporate Plaza, Suite 150, Newport
Beach, CA 92660-7929; email: fielding@apache.org; J.D. Herbsleb, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA 15213; email: jherbsleb@acm.org.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.

© 2002 ACM 1049-331X/02/0700-0309 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002, Pages 309-346.

310 A. Mockus et al.

1. INTRODUCTION

The open source software “movement” has received enormous attention in the
last several years. It is often characterized as a fundamentally new way to
develop software [Dibona et al. 1999; Raymond 1999] that poses a serious
challenge [Vixie 1999] to the commercial software businesses that dominate
most software markets today. The challenge is not the sort posed by a new
competitor that operates according to the same rules but threatens to do it
faster, better, cheaper. The OSS challenge is often described as much more fun-
damental, and goes to the basic motivations, economics, market structure, and
philosophy of the institutions that develop, market, and use software.

The basic tenets of OSS development are clear enough, although the details
can certainly be difficult to pin down precisely (see Perens [1999]). OSS, most
people would agree, has as its underpinning certain legal and pragmatic ar-
rangements that ensure that the source code for an OSS development will be
generally available. Open source developments typically have a central person
or body that selects some subset of the developed code for the “official” releases
and makes it widely available for distribution.

These basic arrangements to ensure freely available source code have led to
a development process that is radically different, according to OSS proponents,
from the usual industrial style of development. The main differences most often
mentioned are the following.

e OSS systems are built by potentially large numbers (i.e., hundreds or even
thousands) of volunteers. It is worth noting, however, that currently a number
of OSS projects are supported by companies and some participants are not
volunteers.

Work is not assigned; people undertake the work they choose to undertake.
There is no explicit system-level design, or even detailed design [Vixie 1999].
There is no project plan, schedule, or list of deliverables.

Taken together, these differences suggest an extreme case of geographically
distributed development, where developers work in arbitrary locations, rarely
or never meet face to face, and coordinate their activity almost exclusively by
means of email and bulletin boards. What is perhaps most surprising about
the process is that it lacks many of the traditional mechanisms used to coordi-
nate software development, such as plans, system-level design, schedules, and
defined processes. These “coordination mechanisms” are generally considered
to be even more important for geographically distributed development than for
colocated development [Herbsleb and Grinter 1999], yet here is an extreme case
of distributed development that appears to eschew them all.

Despite the very substantial weakening of traditional ways of coordinating
work, the results from OSS development are often claimed to be equivalent,
or even superior to software developed more traditionally. It is claimed, for
example, that defects are found and fixed very quickly because there are “many
eyeballs” looking for the problems (Eric Raymond [1999] calls this “Linus’s
Law”). Code is written with more care and creativity, because developers are
working only on things for which they have a real passion [Raymond 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.

Open Source Software Development 311

It can no longer be doubted that OSS development has produced software of
high quality and functionality. The Linux operating system has recently enjoyed
major commercial success, and is regarded by many as a serious competitor to
commercial operating systems such as Windows [Krochmal 1999]. Much of the
software for the infrastructure of the Internet, including the well-known bind,
Apache, and sendmail programs, were also developed in this fashion.

The Apache server (one of the OSS software projects under consideration in
this case study) is, according to the Netcraft survey, the most widely deployed
Web server at the time of this writing. It accounts for over half of the 7 million or
so Web sites queried in the Netcraft data collection. In fact, the Apache server
has grown in “market share” each year since it first appeared in the survey in
1996. By any standard, Apache is very successful.

Although this existence proof means that OSS processes can, beyond a doubt,
produce high-quality and widely deployed software, the exact means by which
this has happened, and the prospects for repeating OSS successes, are fre-
quently debated (see, e.g., Bollinger et al. [1999] and McConnell [1999]). Propo-
nents claim that OSS software stacks up well against commercially developed
software both in quality and in the level of support that users receive, although
we are not aware of any convincing empirical studies that bear on such claims.
If OSS really does pose a major challenge to the economics and the methods of
commercial development, it is vital to understand it and to evaluate it.

This article presents two case studies of the development and maintenance of
major OSS projects: the Apache server and Mozilla. We address key questions
about their development processes, and about the software that is the result of
those processes. We first studied the Apache project, and based on our results,
framed a number of hypotheses that we conjectured would be true generally of
open source developments. In our second study, which we began after the anal-
yses and hypothesis formation were completed, we examined comparable data
from the Mozilla project. The data provide support for several of our original
hypotheses.

In the remainder of this section, we present our specific research questions.
In Section 2, we describe our research methodology for both the Apache and
Mozilla projects. This is followed in Section 3 by the results of Study 1, the
Apache project, and hypotheses derived from those results. Section 4 presents
our results from Study 2, the Mozilla project, and a discussion of those results
in light of our previous hypotheses. We conclude the article in Section 5.

1.1 Research Questions

Our questions focus on two key sets of properties of OSS development. It is
remarkable that large numbers of people manage to work together success-
fully to create high-quality, widely used products. Our first set of questions (Q1
to Q4) is aimed at understanding basic parameters of the process by which
Apache and Mozilla came to exist.

Q1: What were the processes used to develop Apache and Mozilla?
In answer to this question, we construct brief qualitative descriptions of
Apache and Mozilla development processes.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.

312 A. Mockus et al.

Q2: How many people wrote code for new functionality? How many people
reported problems? How many people repaired defects?

We want to see how large the development communities were, and identify
how many people actually occupied each of these traditional development and
support roles.

Q3: Were these functions carried out by distinct groups of people, that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most of
the work?

Within each development community, what division of labor resulted from
the OSS “people choose the work they do” policy? We want to construct a profile
of participation in the ongoing work.

Q4: Where did the code contributors work in the code? Was strict code owner-
ship enforced on a file or module level?

One worry of the “chaotic” OSS style of development is that people will make
uncoordinated changes, particularly to the same file or module, that interfere
with one another. How does the development community avoid this?

Our second set of questions (Q5 to Q6) concerns the outcomes of these pro-
cesses. We examine the software from a customer’s point of view, with respect to
the defect density of the released code, and the time to repair defects, especially
those likely to significantly affect many customers.

Q5: What is the defect density of Apache and Mozilla code?
We compute defects per thousand lines of code, and defects per delta in order
to compare different operationalizations of the defect density measure.

Q6: How long did it take to resolve problems? Were high priority problems
resolved faster than low priority problems? Has resolution interval decreased
over time?

We measured this interval because it is very important from a customer
perspective to have problems resolved quickly.

Mockus Et Al, "Two Case Studies™

» Open source is often characterized as a fundamentally new way to
develop software

» The open source development process is radically different from the
usual industrial style of development:
» extreme case of geographically distributed development, where developers

work in arbitrary locations, rarely or never meet face to face, and coordinate
their activity almost exclusively by means of email and bulletin boards

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

10

The Gap + Hook

» What is perhaps most surprising about the process is that it lacks many of the
traditional mechanisms used to coordinate software development, such as plans,
system-level design, schedules, and defined processes.

» These “coordination mechanisms” are generally considered to be even more
important for geographically distributed development than for colocated
development [Herbsleb and Grinter 1999], yet here is an extreme case of distributed
development that appears to eschew them all.

» Despite the very substantial weakening of traditional ways of coordinating work, the
results from OSS development are often claimed to be equivalent, or even superior to
software developed more traditionally.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

11

The Gap + Hook (2)

» Although this existence proof (Apache, Linux) means that OSS processes can,
beyond a doubt, produce high-quality and widely deployed software, the
exact means by which this has happened, and the prospects for repeating
OSS successes, are frequently debated

» If OSS really does pose a major challenge to the economics and the methods
of commercial development, it is vital to understand it and to evaluate it.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

12

Discussion Points

» What's “the problem” the paper is addressing?

» OSS seems to rival commercial software development and we don’t have any idea why

» What's the gap in knowledge?

» The traditional mechanisms don’t apply in OSS in the same way

» Who cares about the results?

» People building software, new mode of production

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

13

Activity: Read Beginning of “Short and Tweet™ by Chen Et Al

CHI 2010: Understanding Comments

April 10-15, 2010, Atlanta, GA, USA

Short and Tweet: Experiments on Recommending Content
from Information Streams
Jilin Chen*, Rowan NairnT, Les NelsonT, Michael BernsteinA, Ed H. Chi'

" University of Minnesota
200 Union Street SE,

" Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, 32 Vassar Street, Cambridge,

AMIT CSAIL

Minneapolis, MN 55455 CA 94304 MA 02139

Jilin@cs.umn.edu

ABSTRACT

More and more web users keep up with newest information
through information streams such as the popular micro-
blogging website Twitter. In this paper we studied content
recommendation on Twitter to better direct user attention.
In a modular approach, we explored three separate
dimensions in designing such a recommender: content
sources, topic interest models for users, and social voting.
We implemented 12 recommendation engines in the design
space we formulated, and deployed them to a recommender
service on the web to gather feedback from real Twitter
users. The best performing algorithm improved the
percentage of interesting content to 72% from a baseline of
33%. We conclude this work by discussing the implications
of our recommender design and how our design can
generalize to other information streams.

Author Keywords
Information stream, recommender system, topic modeling,
social filtering.

ACM Classification Keywords
H.5.3: Group and Organization Interfaces.

General Terms
Algorithms, Experimentation

INTRODUCTION

Information streams have recently emerged as a popular
means of information awareness. By information streams
we are referring to the general set of Web 2.0 feeds such as
status updates on Twitter and Facebook, and news and
entertainment in Google Reader or other RSS readers.
Although they have notable differences, the above
examples share two key commonalities: (1) they deliver to
each user a stream of text entries over time that are
personalized to the user’s subscriptions, and (2) they allow
users to explicitly interact with each other. As information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2010, April 10-15, 2010, Atlanta, Georgia, USA.

Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

{rnairn, Inelson, echi}@parc.com

msbernst@mit.edu

distribution platforms, Twitter, Facebook and Google
Reader have all enjoyed great popularity and are drawing
ever more new users into them. For instance, according to
compete.com’s traffic statistics, the total number of people
visiting Twitter has been rising from about 6 million per
month in January 2009 to over 23 million per month as of
July 2009 (http://siteanalytics.compete.com/twitter.com/).

With an abundance of information comes the scarcity of
attention [20]. Two user needs arise from attention scarcity:
filtering and discovery. On the one hand, a user’s stream
will often receive hundreds of items each day, much beyond
what users have time to process. Users would like to filter
the stream down to those items that are indeed of interest.
On the other hand, many users also want to discover useful
content outside their own streams, such as interesting URLs
on Twitter posted by friends of friends, or relevant blogs in
Google Reader that are subscribed by other friends. This
discovery task is formidable, given the vast amount of
information that are disseminated daily through information
stream services.

One approach is to proactively recommend interesting
content to users so as to better direct their attention. Google
Reader has implemented a discovery feature that
recommends interesting RSS feeds, and a number of third-
party websites provide filtering or recommendation services
for Twitter users. So far there has been little discussion
regarding the effectiveness of such solutions, and little is
known regarding the design space of information stream
recommenders.

As a domain for recommendation, information streams have
three interesting properties that distinguish them from other
well-studied domains:

(1) Recency of content: Content in the stream is often
considered interesting only within a short time of first being
published. As a result, the recommender may always be in a
“cold start” situation [19], i.e. there is not enough data to
generate a good recommendation.

(2) Explicit interaction among users: Unlike other domains
where users interact with the system as isolated individuals,
with information stream users explicitly interact by
subscribing to others’ streams or by sharing items.

CHI 2010: Understanding Comments

(3) User-generated content: Users are not passive
consumers of content in information streams. People are
often content producers as well as consumers. Micro-
blogging software such as Twitter and Facebook status
updates are prominent examples.

In this paper we describe our design and empirical studies
of a recommender system built on top of Twitter, called
zerozero88, which recommends URLs that a particular
Twitter user might find interesting. The recommender we
developed is publicly available at www.zerozero88.com.

We chose Twitter as our target platform for several reasons,
most importantly because it shares all the common features
of information streams described earlier. As a successful
platform, Twitter also provides a chance to recruit real users
and alleviate their real attention scarcity problems. Finally,
Twitter provides a set of public APIs, enabling us to
implement and deploy our recommender. We chose to
focus on recommending URLSs, because the URL represents
a common ‘unit’ of information on the web, and previous
research has identified sharing URLs and reporting news as
common uses of Twitter [9].

We wish to investigate:

(a) Whether recommender systems can help users find
interesting content on Twitter?

(b) What elements lead to an effective Twitter-based
recommendation? How can this understanding inform
recommender design for other information streams?

To achieve our research goals, we first conducted pilot
interviews to elicit early qualitative feedback and refine our
system design. After implementing the system, we
conducted a controlled field study on our web service to
gather quantitative results.

The rest of the paper is structured as follows. First, we
discuss how existing research relates to our work. We then
provide an overview of information production and
information seeking practices on Twitter. We describe the
design space of our recommender, and then detail our
studies and the results. We conclude with discussions of our
findings that may generalize to other information streams.

RELATED WORK

Recommenders as a solution to attention scarcity have been
studied for years. Perhaps the most well-known approach is
collaborative filtering (CF), which recommends items (such
as news stories) using similarities of preferences among
users [10]. This approach does not rely on the content of
items, but instead requires users to rate items to indicate
their preferences, and infers preference similarity from the
overlap of rated items across users.

CF recommenders commonly suffer from little user rating
overlap early on, known as the “cold-start” problem; a
common solution is to use other information like the textual
content of the items to be recommended [4, 19].

April 10-15, 2010, Atlanta, GA, USA

There is a wealth of research on recommenders that utilize
the content of items. Such recommenders are often used in
domains where extensive textual content is available for
items, such as websites [14] and books [13]. For example,
to recommend websites, Pazzani et al. first created bag-of-
word profiles for individuals from their activities and then
chose websites most relevant to the profile of the individual
as recommendations [14]. Because activities of an
individual are often insufficient for creating useful profiles,
Balabanovic et al. proposed to create profiles not from an
individual’s activity but from a group of related individuals
[4]. This work can be viewed as a hybrid of collaborative
filtering and content-based approaches [12].

Recommendations can be generated from explicit social
information and social processes as well. For example, Hill
et al. described a social filtering recommender on Usenet
newsgroups [8]. For each newsgroup, they recommended
the most frequently mentioned URLs to that group.
Andersen et al. proposed the concept of a trust-based
recommender [2]. From a theoretical perspective they
discussed ways to employ users’ opinions toward other
users to compute recommendations. Several other papers
investigated the possibility of using social network
structures for recommendation [5, 7]. For example, Chen et
al. recommended friends-of-friends as potential friends to
users of a social networking site, and showed that this
scheme is accepted more often than recommending people
sharing common keywords [5].

Prior research in developing scalable recommenders [6, 15,
18] is also relevant here because the Twitter ecosystem is so
huge that many otherwise useful algorithms become
intractable. For example, Sarwar et al. applied clustering
algorithms to partition user population, built neighborhoods
for users from the partition, and considered only those
neighborhoods when computing recommendations [18].
Another relevant work integrated distributed computation
techniques for recommendation in Google News [6]. These
techniques recursively chop a full problem into sub-
problems, so that in the end they can utilize all information
in the system despite the large scale of the data.

Outside of academic research, several start-up companies
provide information stream filtering or recommendation
services, such as myb6sense.com, feedafever.com, and
MicroPlaza.com. Both my6sense and feedafever filter RSS
feeds, including Twitter streams. MicroPlaza recommends
personalized news for Twitter users. As start-ups, none of
them disclose their approaches or benchmarks.

Because Twitter has both textual and social information
available, key parts of the past work described above may be
applicable for a Twitter recommender. However, most of
them have not yet been implemented and evaluated on
Twitter or information streams in general. As a result, it is
unclear whether these techniques function well given the
differences between their original domains and Twitter, or if
some techniques need to be changed to fit the needs of

CHI 2010: Understanding Comments

Twitter users. Our work not only depict the design space for
a Twitter recommender, but also better inform designers of
recommenders for other information streams.

INFORMATION PRODUCTION & SEEKING ON TWITTER
Twitter describes itself as a micro-blogging service. Users of
the site can post short messages, each up to 140 characters,
commonly known as tweets. As information producers,
people post ‘tweets’ for a variety of purposes, including daily
chatter, conversation, sharing information/URLs and
reporting news [9]. Other information streams may have
different dominating purposes for posting. For example, on
Facebook most of status updates are daily chatter and
conversation, while a majority of blog posts in Google
Reader may be for information sharing.

As an information seeker, each Twitter user sees a tweet
stream when visiting Twitter. A new account only includes
tweets posted by one’s self; one can include another user’s
tweets by following that user. Throughout this paper,
whenever user A follows user B, we refer to A as B’s
follower, and B as A’s followee.

While some might refer to their followees as their “friends”,
the following relationship on Twitter is not reciprocal, and
does not necessarily imply friendship or even acquaintance
between two users. For example, over two million users
follow Barrack Obama, few of whom he follows back.
Obviously, those people follow President Obama because
they are interested in what he says, not because they are
personal friends with him. This mechanism of following is
different from friendship in other sites such as Facebook,
where connections between people are always reciprocal and
require confirmation from both sides.

A typical Twitter user picks a list of followees by hand and
monitors her personal stream over time. People can also
discover information outside their stream in a number of
ways, including typing the username of an arbitrary user to
see her stream, checking the most popular topics across the
whole Twitter site, searching for tweets over the whole
Twitter site by keywords, or using one of many third party
services that support exploration on Twitter.

April 10-15, 2010, Atlanta, GA, USA

Chen Et Al, “Short and Tweet”

Introduction

» Information streams are increasingly popular.

» With an abundance of information comes the scarcity of attention.
» Need to filter the stream down.

» One approach is to recommend interesting content to users to better direct
their attention.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

15

Chen Et Al, “Short and Tweet”

» Recommenders as a solution to attention scarcity have been studied for years.

» Perhaps the most well-known approach is collaborative filtering (CF) - infers
preference similarity from the overlap of rated items across users

» CF recommenders commonly suffer from little user rating overlap early on
(“cold-start”); a common solution is to use other information

» There is a wealth of research on recommenders that utilize the textual content
of items.

» Recommendations can be generated from explicit social information and
social processes as well.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

16

The Gap + Hook

» Because Twitter has both textual and social information available, key parts of
the past work described above may be applicable for a Twitter recommender.

» However, most of them have not yet been implemented and evaluated on
Twitter or information streams in general.

» As aresult, itis unclear whether these techniques function well given the

differences between their original domains and Twitter, or if some techniques
need to be changed to fit the needs of Twitter users.

» Our work not only depicts the design space for a Twitter recommender, but
also better informs designers of recommenders for other information streams.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

17

Discussion Points

» What's “the problem” the paper is addressing?

» Content recommendation / filtering in social media is hard

» What's the gap in knowledge?

» We don’t know if various things that have been proposed work or not
» ... in this kind of structure / online interaction mode
» The utility of textual vs social information

» Who cares about the results?

» People building social media sites and their users

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

18

summary: Three Components to a Literature Review

(1) Identify a problem in the world that people are talking about;

(2) Establish a gap in the current knowledge or thinking about the
problem; and

(3) Articulate a hook that convinces readers that this gap is of
consequence.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

19

Aside: Citation dos and don'ts

Citation Dos and don'ts (1)

» Don’t add citations just to pad the bibliography!

» Prefer:

» Original paper over secondary source
» Well-written material over bad
» Peer-reviewed, top tier venue paper over unpublished / arXiv

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

21

Citation Dos and don'ts (2)

» Describe results from other papers fairly and accurately

» Neither belittle papers, nor overstate their significance

X

J Robinson's theory suggests that a cycle of handshaking can be eliminated [22], but
as yet there is no experimental confirmation.

Robinson's theory suggests that a cycle of handshaking can be eliminated, but he
did not perform experiments to confirm his results [22].

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

22

Citation Dos and don'ts (3)

» References that are discussed should not be anonymous.

x Other work [16] has used an approach in which...

Marsden [16] has used an approach in which...
Other work (Marsden 1991) has used an approach in which...

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

23

Citation Dos and don'ts (4)

» Quoted material should be an exact transcription of the original text.

» Permissible changes:

/ They describe the methodology as “a hideous mess | ...] that somehow manages to
work in the cases considered [but] shouldn't"

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

24

Credits

» Graphics:
» Dave DiCello photography (cover)

» Content:

» Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods for
software engineering research. In Guide to advanced empirical software engineering (pp. 285-311).
Springer, London.

» Varpio, L., Paradis, E., Uijtdehaage, S., & Young, M. (2020). The distinctions between theory,
theoretical framework, and conceptual framework. Academic Medicine, 95(7), 289-994.

» Lingard, L.(2015). Joining a conversation: the problem/gap/hook heuristic. Perspectives on Medical
education, 4(5), 252-253.

» Lingard, L. (2018). Writing an effective literature review. Perspectives on medical education, 7(2),
133-135.

» Justin Zobel, Writing for Computer Science (3rd Edition). Springer, 2015

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

25

THE LANDING HOTEL

.

https://twitter.com/DaveDiCello

What Is a Theory?

» Atheory is a set of propositions that are logically related, expressing the
relation(s) among several different constructs and propositions.

» Characteristics:

» Identifies and defines constructs / phenomena;

» Makes assertions about their nature;

» Makes assertions about the causal relationships between them;
» Explains why certain relationships occur (good theories).

» Theories are the building blocks of scientific knowledge.

» They explain how and why certain phenomena occur, and allow predictions to be made.
» The more data supporting the theory, the stronger it becomes.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

27

What Is a Theory?

» Theories can be:

» descriptive (i.e., naming and characterizing a phenomenon),

» explanatory (i.e., clarifying the relationships between phenomena),
» emancipatory (i.e., articulating the oppression of a people),

» disruptive (i.e., extending existing knowledge or refuting it), or

» predictive (i.e., predicting an outcome based on specific inputs).

» Theories can also have different levels of explanatory power:

» Grand theories: highly abstract; broad natural or social patterns (e.g., Marxist theories of society)
» Mid-range theories: address more specific aspects of human interactions (e.g., signaling theory)
» Microtheories: focus on individual-level phenomena (see microsociology)

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

28

Theories Explaining Phenomena Can Compete

» Different theories can address different aspects of a phenomenon, each
offering different insights into the phenomenon.

» Different theories can even address the same aspect of a phenomenon.

» Theories that are simpler, or more elegant are preferred.

» Read broadly!

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

29

Theory for Positivists vs Constructivists

» Positivists expect their theories to have strong predictive power.

» e.g., generalized models of cause-and-effect as the basis for theories.

» Constructivists expect theories to strengthen their understanding
of complex situations.

» e.g., frequent use of categorizations and analogies.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

30

How Objectivist Deductive Researchers Use Theory

» Atheory as the starting point for the research project.

» The theory offers testable components:

» the cause-and-effect relationships that can be examined,
» the concepts that should be operationalized,
» the variables that are relevant to control.

» These testable components are used to generate specific hypotheses
which are the foundation for a study.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

31

How Objectivist Deductive Researchers Use Theory

» The theory is part of the object of research.

» simultaneously test a hypothesis derived from theory and the accompanying theory
underlying that hypothesis.

» The theory must:
» (1) be testable;
» (2) be open to being falsified.

» New knowledge: evidence to support, refine, or challenge a theory.

» Linear progression: theory —> hypothesis development —> data
collection —> interpretation of findings —> refinement of theory /
generation of new causal explanations.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

32

How Subjectivist Inductive Researchers Use Theory

» (1) Theory as the product of research.

» Grounded Theory: generating theory from the data; most fully inductive.

» (2) One or more theories informing the research process.

» theory shapes every stage of the research process, including research questions, data collection, etc.

» theory refinement/ development may be a major research output.

» (3) Theory as an interpretive tool.

» chosen during data analysis processes to shape the final study interpretations and conclusions.
» may have to modify the data collection and analysis partway as new theory becomes relevant.

» All three are valid.

» But make early, explicit decision as to when and how to use theory (impacts development of the
theoretical framework).

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 33

More on the Role of Theory:

» Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods
for software engineering research. In Gwde to advanced empirical software engineering

(pp. 285-311). Springer, London.

» Varpio, L., Paradis, E., Uijtdehaage, S., & Young, M. (2020). The distinctions between theory,
theoretical framework, and conceptual framework. Academic Medicine, 95(7), 989-994.

> Topic: using Al to generate programming
source code from natural language

> 9 months into his PhD
> Has built a tool
> Needs an evaluation plan

Meet Stu Dent

Stu Dent idea by Steve Easterbrook

Stu's Evaluation Plan

» Controlled experiment using an IDE plugin

» Independent variable: Stu’s “NL2Code” vs. writing code “from scratch”
» Dependent variables: correctness, speed, subjective assessment

» Tasks: various Python

» Subjects: CS grad students

» Hypotheses:

» H1: “Code written using NL2Code is more often correct than code written from scratch.”
» H2: "Subjects complete tasks faster when using NL2Code than when writing code from scratch.”
» H3: “Subjects prefer using the snippets from NL2Code over writing code from scratch.”

» Results:

» H1 & H2 & H3 rejected*
» Subjects found NL2Code unintuitive

* True story: https://arxiv.org/abs/2101.11149 Slide idea by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 36

https://arxiv.org/abs/2101.11149

Threats to Validity

» What is correctness? How is it measured (subjective?)? How is speed
measured?

» “Construct validity”

» How familiar were the subjects with the NL2Code plugin?

» “Internal validity”

» Were the tasks representative? Grad student subjects as sample of what
population? Are they representative?

» “External validity”

» Subjects knew NL2Code was Stu’s own tool

» “Theoretical reliability”

» ... much more on threats to validity throughout the semester

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

37

What Went Wrong?

» What was the research question?
» Is tool A (NL2Code) better than tool B (from scratch)?

» What would count as an answer?

» What use would the answer be?

» How is it a “contribution to knowledge”?

» How does this evaluation relate to the existing literature?

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 38

Compare to Medical Trials

Why do we need to
Why would we expect know? What will we do
it to be better? with the answer?

s drug A better than drug B?

Better in what

Better at doing , situations?
Better in what way?
what?

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 39

“Meh, doesn't apply to me, I'm primarily building tools In my research”

Why Build a Tool?

» Build a Tool to Test a Theory

» Tool is part of the experimental materials needed to conduct your study

» Build a Tool to Develop a Theory

» Theory emerges as you explore the tool

» Build a Tool to Explain your Theory

» Theory as a concrete instantiation of (some aspect of) the theory

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 41

Why would we expect
it to be better?

You gotta have a theory!

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 42

otu's Theory

» Background assumptions

» Tasks can be completed by piecing together code snippets involving popular libraries / APls
» Many such example code snippets are available in NL2Code's trained data

) ooc

» Basic theory (brief summary)

» Programmers decompose tasks into a sequence of (small) steps. At every step, they know
conceptually what must be done next, but (a) do not know how to create a concrete
implementation of their idea, or (b) would rather not have to type it in. The NL2Code Al
could help speed up task completion especially in the (b) scenario; otherwise, with (a) users
might not recognize which NL2Code search result to use, if multiple, or know how to
integrate that snippet into their program. Possible speedups would occur primarily because
users risk getting distracted when they switch context going outside of their IDEs, and not
because of the time it would take to write down source code (because programmers mostly
copy paste code from Stack Overflow anyway; they rarely write code from scratch). ...

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

43

otu's Theory

» Some possible derived hypotheses:
» For tasks where programmers have extensive prior experience (i.e., they could have written
solutions from scratch), using NL2Code should reduce task completion times.

» The more steps (e.g., API calls) are involved in implementing a solution to a task, the more
NL2Code should speed up task completion times.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

44

summary

» In any empirical study, theories become a “lens” through which the world is
observed and interpreted, whether or not they are explicitly acknowledged.

» Real-world phenomena too rich / complex to study without that much filtering.

» Quantitative methods:

» Theory to decide which variables to isolate and measure, and which to ignore or exclude.

» Qualitative methods:

» Theory to focus data analysis / interpretation.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

45

summary

» Without the theory, we have no way of making sense of the
accumulation of empirical results.

» An individual study can never offer conclusive results.

» Theories support analytical generalization

» Provide a deeper understanding of our empirical results
» ...and hence how they apply more generally
» Much more powerful than statistical generalization

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

46

All Methods Are Flawed

» E.g. Laboratory Experiments

» Cannot study large scale software development in the lab!
» Too many variables to control them all!

» E.g. Case Studies

» How do we know what's true in one project generalizes to others?
» Researcher chose what questions to ask, hence biased the study

» E.g.Surveys

» Self-selection of respondents biases the study
» Respondents tell you what they think they ought to do, not what they actually do

» etc.

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 47

Strategies To Overcome Weaknesses

» Theory-building
» Testing a hypothesis is pointless (single flawed study!)...
» ...unless it builds evidence for a clearly stated theory

» Empirical induction

» Series of studies over time...
» Each designed to probe more aspects of the theory
» ...together build evidence for a clearly stated theory

» Mixed-methods research

» Use multiple methods to investigate the same research question
» Each method compensates for the flaws of the others
» ...together build evidence for a clearly stated theory

Slide by Steve Easterbrook

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026 48

Credits

» Graphics:
» Dave DiCello photography (cover)
» Content:

» Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods

for software engineering research. In Guide to advanced empirical software engineering (pp.

285-311). Springer, London.

» Varpio, L., Paradis, E., Uijtdehaage, S., & Young, M. (2020). The distinctions between theory,
theoretical framework, and conceptual framework. Academic Medicine, 95(7), 989-994.
» Trockman, A., Zhou, S., Kastner, C., & Vasilescu, B. (2018). Adding sparkle to social coding: an

empirical study of repository badges in the npm ecosystem. In Proceedings of the 40th
International Conference on Software Engineering (pp. 511-522).

Carnegie Mellon University [17-803] Empirical Methods, Spring 2026

49

