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Let's start with a case study.



Newspaper
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A Few Important Questions That We Might Seek To Address

Is there a relationship between advertising budget and sales?
How strong is the relationship between advertising budget and sales?

Which media contribute to sales?

How accurately can we predict future sales?

4
4
4
» How accurately can we estimate the effect of each medium on sales?
4
» Is the relationship linear?

4

Is there synergy among the advertising media?
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simple Linear Regression




Many Possible Linear Models
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Best Model? Minimize Error




Residuals




Simple Linear Regression

The least squares fit for the regression of sales onto TV

» The least squares fit for the
regression of sales onto TV is
found by minimizing the sum of
squared errors.




Assessing the Accuracy of the Coefficient Estimates

The true relationship: f(X) — 24+ 3X




Assessing the Accuracy of the Coefficient Estimates

The least squares estimate for f(X) based on the
observed data.

The true relationship: f(X) — 24+ 3X




Assessing the Accuracy of the Coefficient Estimates

The least squares estimate for f(X) based on the
observed data.

The true relationship: f(X) — 24+ 3X

In real applications, the population regression
line is unobserved.

Y:ﬁO—FﬁlX—i—E.




Assessing the Accuracy of the Coefficient Estimates

Ten least squares lines,
each computed on the

basis of a separate random
set of observations.

The average of many least
squares lines is pretty close
to the true population
regression line.




Analogy with the estimation of the population mean p of a random variable Y

» A natural question: how accurate is the
sample mean J” as an estimate of p?

» Standard error

» Standard errors can be used to compute
confidence intervals.

» A 95% confidence interval is defined as a
range of values such that with 95%
probability, the range will contain the true
unknown value of the parameter.




Analogy with the estimation of the population mean p of a random variable Y

» For linear regression, the 95% confidence
interval for B1 approximately takes the form

B1 £+2-SE(B1).

» Similarly, a confidence interval for 0
approximately takes the form

Bo £ 2 - SE(By).




Back to our example

> The 95 % Cl for f0:[6.130, 7.935]
The least squares fit for the regression of sales onto TV The 95 % Cl for 31:[0.042, 0.053]

> In the absence of any advertising,
sales will, on average, fall

somewhere between 6,130 and
/7,935 units.

» For each $1,000 increase in TV
advertising, there will be an
average increase in sales of
between 42 and 53 units.




Key idea for empirical research



Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

» Testing the null hypothesis:
» HO : There is no relationship between X and Y

» vs the alternative hypothesis

» Ha : There is some relationship between X and Y

Y:,B()—FBlX—f-E.
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Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

» Testing the null hypothesis: » Corresponds to testing

H()Z,Blzo

» HO : There is no relationship between X and Y

» vs the alternative hypothesis ) VS
» Ha : There is some relationship between X and Y Hg : b1 7& 0,

Y:ﬁg—l—ﬁlX—l—E.

=> Compute a t-statistic and associated p-value
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Standard Errors Can Also Be Used To Perform Hypothesis Tests on the Coefficients.

» Testing the null hypothesis: » Corresponds to testing
» HO : There is no relationship between X and Y

» vs the alternative hypothesis ) VS
» Ha : There is some relationship between X and Y Hg : b1 7é 0,

Coeflicient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001

TV 0.0475 0.0027 17.67 < 0.0001

An increase of $1,000 in the TV advertising budget is
associated with an increase in sales by around 50 units.




Another Example

i

## Call:

## lm(formula = yl ~ x1, data = anscombe)
FH

## Residuals:

## Min 10 Median 30 Max ! | |
## -1.92127 -0.45577 -0.04136 0.70941 1.83882 5 10 15
T

## Coefficients:

A Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 3.0001 1.1247 2.667 0.02573 *

## x1 0.5001 0.1179 4,241 0.00217 *=*

HH#H ———

## Signif. codes: 0 '*x*' 0.001 '**x' 0.01 '*' 0.05 '.' 0.1 ' " 1
##

## Residual standard error: 1.237 on 9 degrees of freedom

## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217




Let's make 1t more realistic



How To Extend our Analysis To Accommodate all Predictors?

» One option is to run three separate simple linear regressions.

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Coefficient Std. error t-statistic p-value
Intercept 0.312 0.563 16.04 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Coeflicient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115




How To Extend our Analysis To Accommodate all Predictors?

» A better option is to give each predictor a separate slope coefficient in
a single model:

Y = Bo+ 81Xy + B2 Xo +-- -+ Bp Xy + €,

sales = [y + 81 X TV + B9 X radio + 33 X newspaper — €.

» We interpret 3j as the average effect on Y of a one unit increase in X,
holding all other predictors fixed.
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Aside: Ingredients for Establishing a Causal Relationship

The cause was related to the effect

We can find no plausible alternative
explanation for the effect other than the cause
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Back to our Advertising Example

Coefficient = Std. error t-statistic p-value |
Intercept 2.939 0.3119 9.42 < 0.0001 |
TV 0.046 0.0014 32.81 < 0.0001
radio 0.189 0.0086 21.89 < 0.0001
newspaper —0.001 0.0059 —0.18 0.8999

Coefficient Std. error t-statistic p-value
Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Coefficient Std. error t-statistic
Intercept 9 312 0.563 16.94
radio 0.203 0.020 9.92

Coeflicient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.005 0.017 3.30 0.00115




Interaction Effects

» Consider the standard linear regression model with two variables

Y = B0+ 01X1 4+ [2X2 + €

» According to this model, if we increase X1 by one unit, then Y will increase by
an average of B1 units
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Interaction Effects

» Extending this model with an interaction term gives:

Y = Bo+ 1 X1+ 2 Xo + B3 X1X2 + €.
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Interaction Effects

» Extending this model with an interaction term gives:

Y = Bo+ 1 X1+ 2 Xo + B3 X1X2 + €.

Bo + (B1 4+ B3 X2) X1 + B2 X2 + €
Bo + 1 X1+ P2 X2 + €

» According to this model, adjusting X2 will change the impact of X1 onY




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

1f 2th 1S a student
~ /80 + ,81 X 1lncome; — {Bz 1117 person 1s

0 if +th person is not a student

Bo + Bo if ith person is a student
Bo if 7th person is not a student.

B1 X income; + {




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

B if 7th person is a student

By + £1 X income; + {

0 if +th person is not a student

{, if 7th person is a student
B1 X income; +

if +th person is not a student.

—— student » Without an interaction term: fitting two
— non-student parallel lines to the data, one for students
and one for non-students.

» The lines for students and non-students
have different intercepts, B0 + 32 versus 30,
but the same slope, 1.

10 100

Income




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

B + (B3 X income; if student

balance; + 01 X income; + :
Bo + b1 {O if not student

Bo + B1 X income; if not student

{(ﬁo + B2) + (81 + B3) X income; if student




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

3o + X income; 1f student
balance; Bo + 81 X income; + < 2+ s ‘ ,
0 if not student

(Bo + B2) + (81 + B3) X income; if student
Bo + B1 X income; if not student

— student » With an interaction term: the regression
— hon-student lines for the students and the non-students

have different intercepts, p0+[2 versus 30,
and different slopes, B1+3 versus 1.

» Allows for the possibility that changes in
income may affect the credit card balances

of students and non-students differently.




it's complicated.



Potential Problem: Non-Linearity of the Data
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Potential Problem: Non-Linearity of the Data

Residuals vs Fitted
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Fitted values

» Ideally, the residual plot will show no discernible pattern.
» Otherwise, indicates nonlinear relationship in the data.




Potential Problem: Non-Linearity of the Data

Residuals vs Fitted
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4

Fitted values

» Contrast the example on the previous slide to the one we had earlier.




##
#H
##
##
#H#
##
##
##
##
##
##
#H
##
##
i
##
#H#
#H

10 12

6 8

4

Call:

Im(formula = yl ~ x1, data = anscombe)
Residuals:

Min 10 Median 30 Max
-1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 =*
x1 0.5001 0.1179 4,241 0.00217 **
Signif. codes: O '***' (0.001 '**' 0.01 '*' 0.05 '."' 0.1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
rF-statistic: L/.Y9Y on L and 9 DF, p-value: 0.00217

Call:
Im(formula = y2 ~ x2, data = anscombe)

Residuals:
## Min 10 Median 30 Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691

Coefficients:

#H# Estimate Std. Error t value Pr(>|t]|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## | x2 0.500 0.118 4.239 0.00218 **

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '."'" 0.1 ' " 1

Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179




Another Example: Dealing With Non-Linearity

linear regression of linear regression of mpg on
mpg on horsepower horsepower and horsepower”2

Residual Plot for Linear Fit Residual Plot for Quadratic Fit

-
Q\
334

Residuals
Residuals

| | | | | | | | | |
10 15 20 25 30 15 20 25 30 35

Fitted values Fitted values




Residuals

Fitted values

Remember This
Example?

Residuals

Fitted values




Potential Problem:
Correlation of Error Terms

Residual

» Some causes:

» Time series: observations at
adjacent time points will have
positively correlated errors

©
3
-
7
o)
o

» Also non time-series causes

» Effect:

» The estimated standard errors
will tend to underestimate the
true standard errors.

| | — |

Residual
-1.5 =05 05

Plots of residuals from simulated time series data
sets generated with differing levels of correlation

between error terms for adjacent time points. Observation




Potential Problem: Non-Constant Variance of Error Terms (“Heteroscedasticity’)

» Symptom: the variances of the error terms may increase with the value of the response.

Response Y Response log(Y)
The response has

been log
transformed, and
there is now no
evidence of
heteroscedasticity.

The funnel shape
indicates
heteroscedasticity.

0.4

0.2

Residuals
Residuals
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Fitted values Fitted values

Heteroscedasticity tends to produce p-values that are smaller than they should be.




Potential Problems: Qutliers and High Leverage Points

Residuals vs Fitted

Residuals
Residuals

Fitted values Fitted values




Potential Problems: Qutliers and High Leverage Points

Residuals vs Leverage

| |
(-] —
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Standardized residuals
Standardized residuals
I

. Og L
- Cook's distance - —- Cook's distance O7
I [ | [ [ | [ [ |

0.10 0.20 . 0.00 002 004 006 0.08 0.10

O
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Leverage Leverage




10 12
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6

Call:

Im(formula y3 — x3, data anscombe)
Residuals:

10 Median
-1.1586 -0.6146 -0.2303

0.1540 3.2411

Coefficients:
Pr(>|t]|)

0.02562 *
0.00218 =*x*

Estimate Std. Error t value
3.0025
0.4997

1.1245
0.1179

2.670
4,239

(Intercept)

"% %'

Signif. codes: 0.001
Residual standard error:
0.6663, Adjusted R-squared:
0.002176

1.236 on 9 degrees of freedom
Multiple R-squared:
17.97 on 1 and 9 DF,

o e o i G i G i i

F-statistic: p-value:

Remember the
Earlier Example?

## Call:

## lm(formula yv4d ~ x4, data anscombe )

e Min

## Residuals:
10 Median

## -1.751 -0.831 0.000 0.809 1.839

##

#4 x4

## Coefficients:

Std. Error t value Pr(>|t|)
0.02559 +*
0.00216 *=

Estimate
3.0017
0.4999

1.1239
0.1178

2.671
4,243

#4 (Intercept)

.U 0.1 Y N1

"k %'

## Signif. codes: 0.001

0.6292

## Residual standard error:
## Multiple R-squared:
## F-statistic:

1.236 on 9 degrees of freedom
0.6297
0.002165

0.6667,
18 on 1 and 9 DF,

Adjusted R-squared:
p-value:



Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome vy is perfectly




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1l = c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome y is perfectly

» But there's a problem... because
the following are also true

y = 2x

y=3x —x

y = —400x; + 402x,




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome vy is perfectly

modeled as Effects:

» Butthere's a problem... because > The model is unable to accurately distinguish
the following are also true between many nearly equally plausible linear
combinations of collinear variables.

> This can lead to large standard errors on coefficients,

y =3x; —x and even coefficient signs that don’'t make sense.

y = 2x;

y = —400x; + 402x,




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome y is perfectly

» But there's a problem... because # Evaluate Collinearity

the following are also true library (car)
vif (fit) # variance inflation factors
y = 2x1 sqrt (vif (fit)) > 2 # problem?

y = 3x; —x

;y:=:-—4(N)x1-+-4(XZx2




Activity: How To Address These Questions?

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?

s the relationship linear?

Is there synergy among the advertising media?



... to be continued
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