

17-803 Empirical Methods

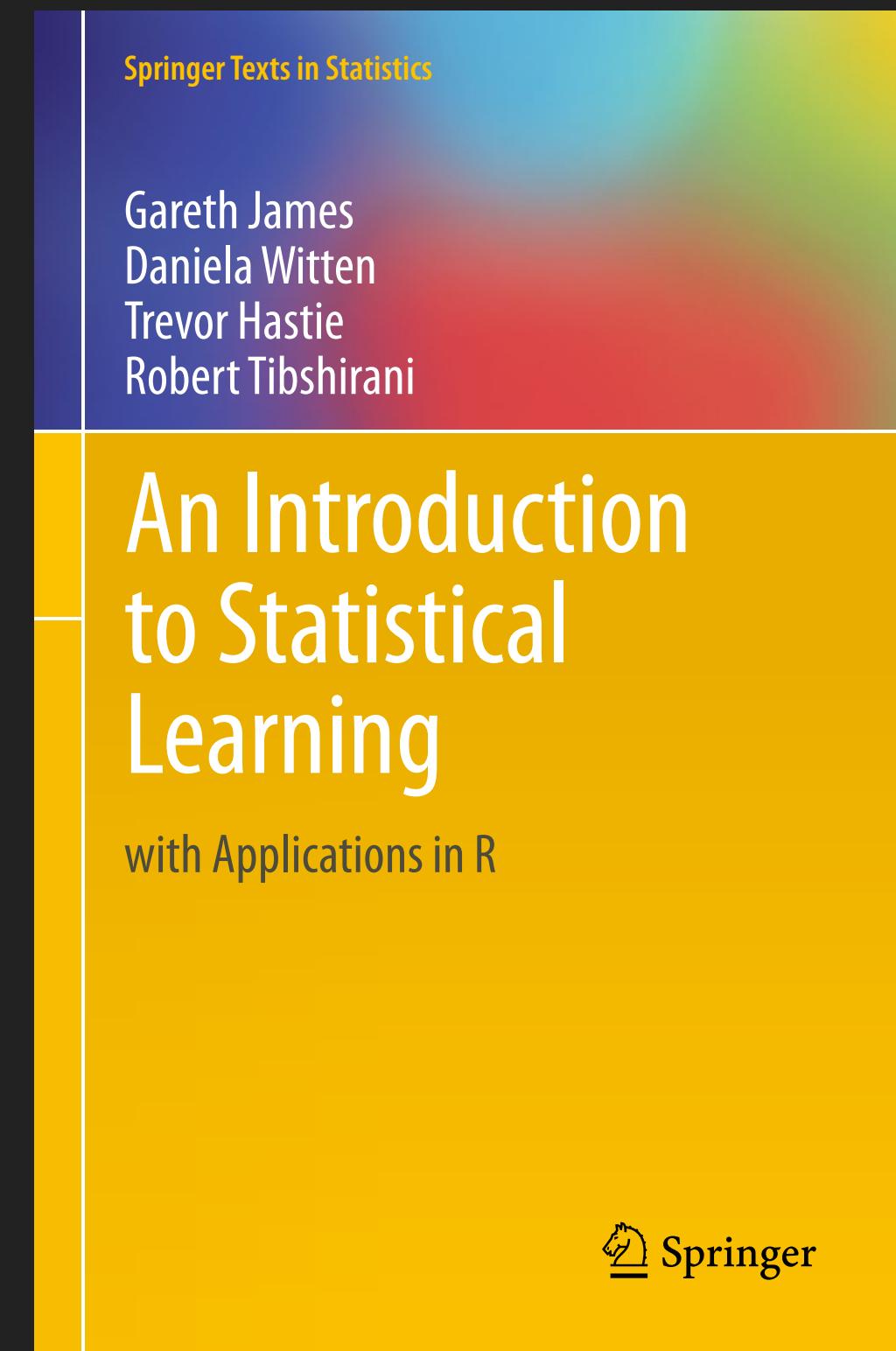
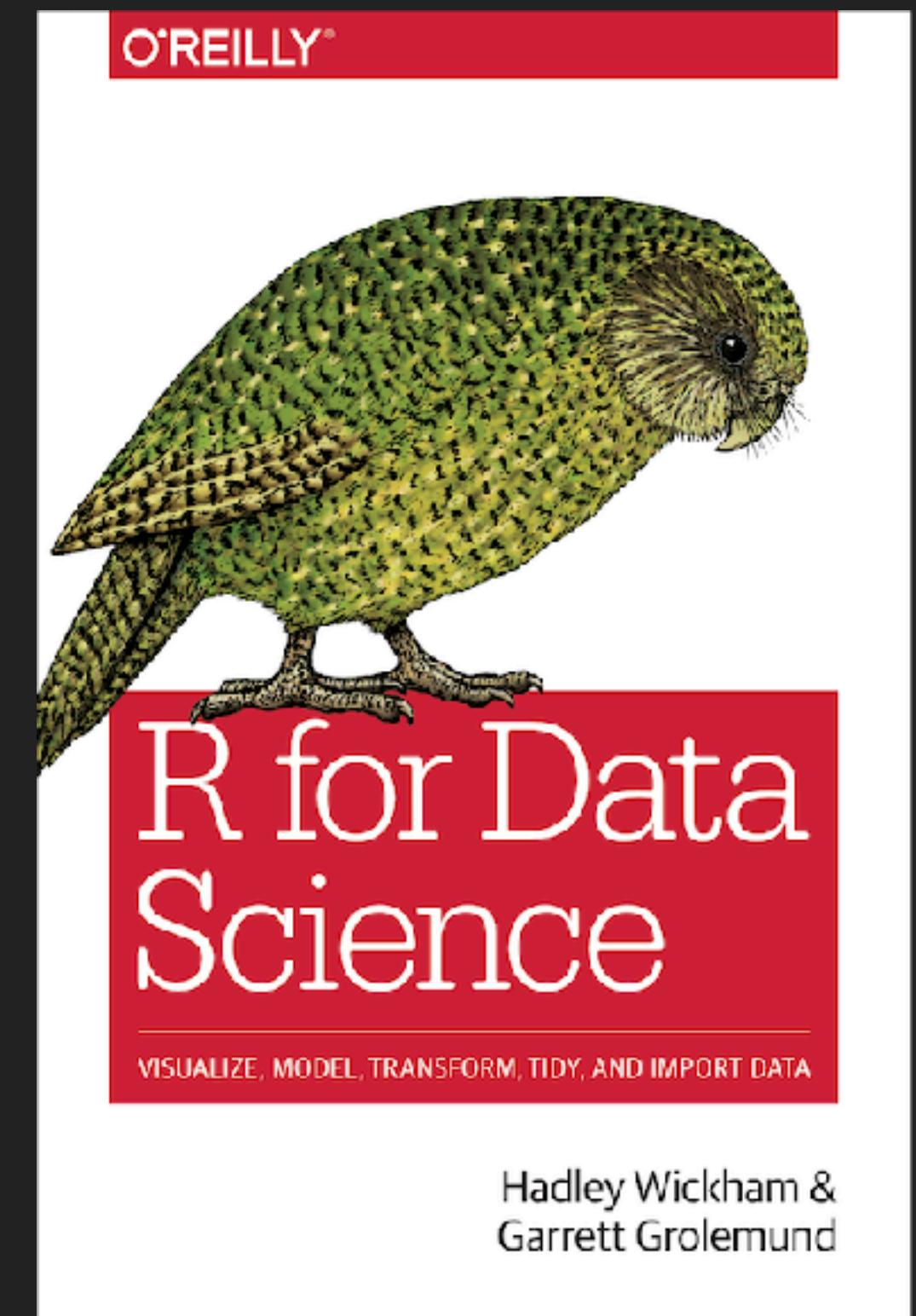
Bogdan Vasilescu, S3D

Regression Modeling (Part 2)

Thursday, March 21, 2024

Outline for Today

- ▶ More linear regression (Rmd + only limited slides)



✓ regression

- Chapter 2 - Wooldridge - Simple Regression.pdf
- Chapter 3 from "An Introduction to Statistical Learning".pdf
- Chapter 4 from "Practical Statistics for Data Scientists" - O'Reilly Media (2020).pdf
- Chapters 22-24 from "R for Data Science".pdf
- Harrell - Chapter 4 - Modeling Strategies.pdf
- Harrell - Chapters 1&2 - Regression General Aspects.pdf

Ch 3 (Linear regression)

Ch 22-24 (Modeling)

More To Read

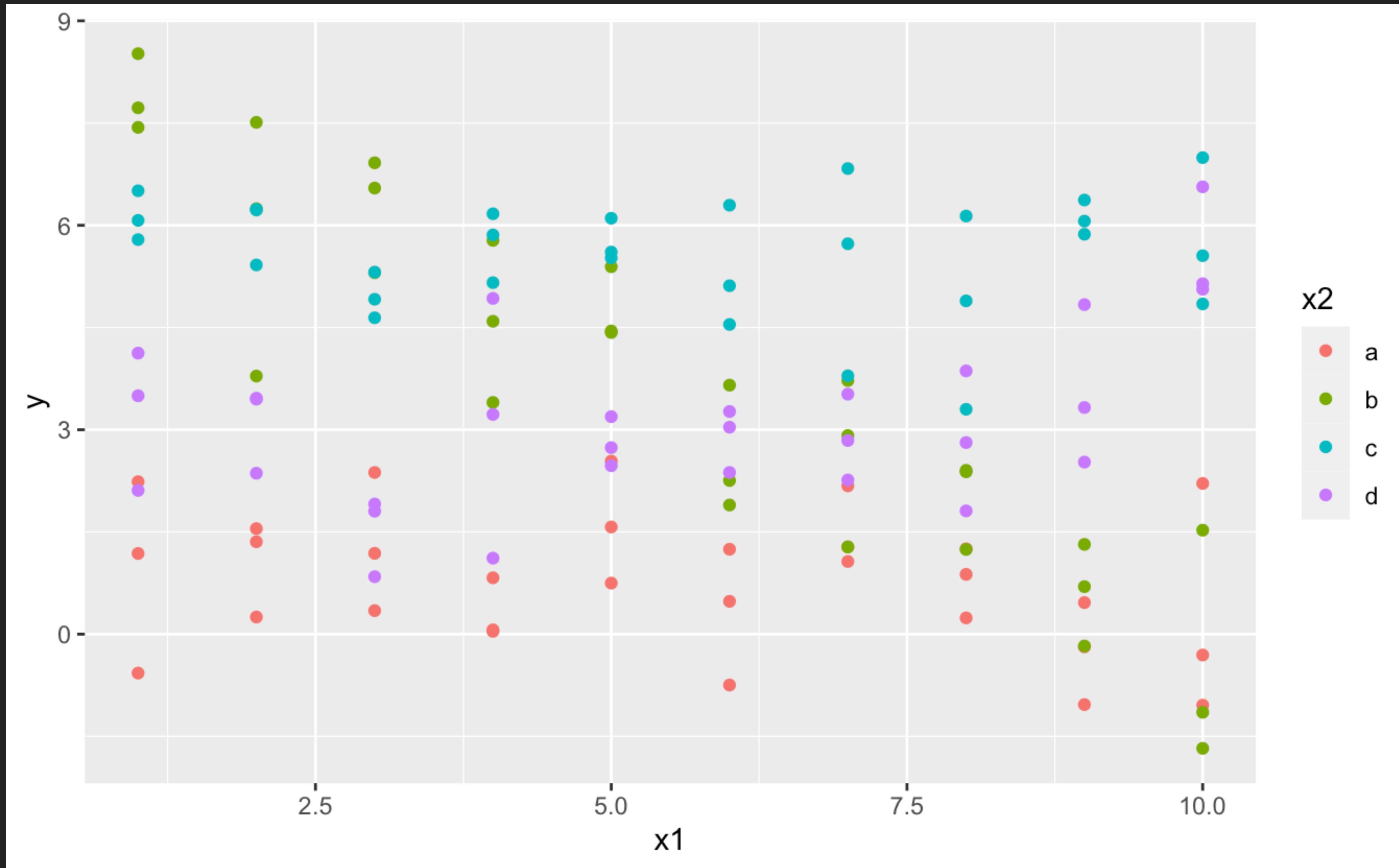
- ▶ Dealing with outliers: <https://andrewpbray.github.io/reg/week6B-outliers.html>
- ▶ Assumptions: <https://blog.msbstats.info/posts/2018-08-30-linear-regression-assumptions/>
- ▶ Diagnostics:
 - ▶ Anscombe: <https://andrewpbray.github.io/reg/week6A-diagnostics.html>
 - ▶ https://www.andrew.cmu.edu/user/achoulde/94842/homework/regression_diagnostics.html
 - ▶ <https://data.library.virginia.edu/diagnostic-plots/>
- ▶ Q-Q plots: <http://seankross.com/2016/02/29/A-Q-Q-Plot-Dissection-Kit.html>
- ▶ Interactive visualization: https://gallery.shinyapps.io/slr_diag/
- ▶ How to code categorical variables in a regression: <https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/>
- ▶ Understanding model outputs: <https://www.andrew.cmu.edu/user/achoulde/94842/>
- ▶ Alpha vs p-value: https://rationalwiki.org/wiki/Statistical_significance#Alpha_value_versus_p-value

See Also

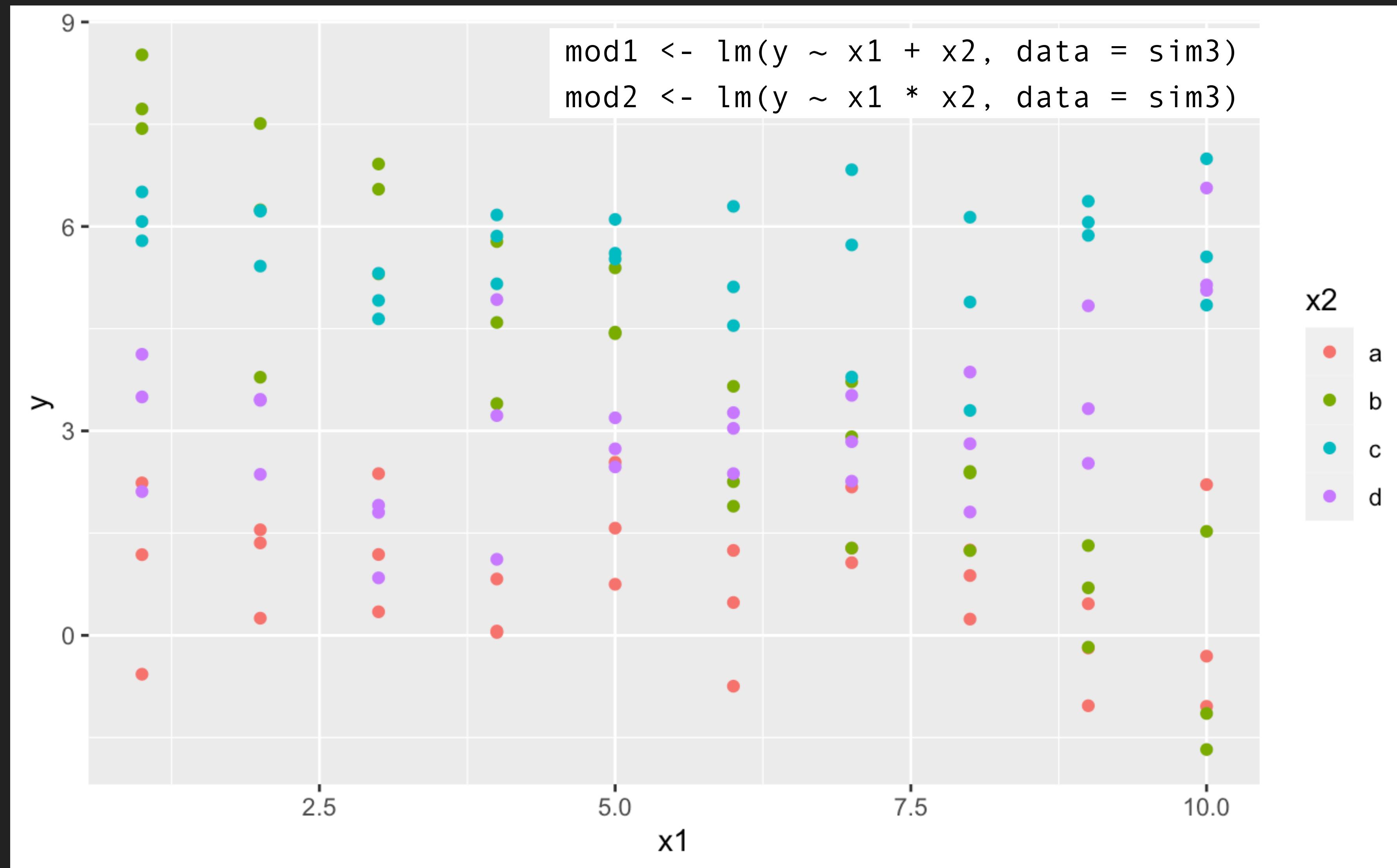
- ▶ CMU 94-842: Programming in R for Analytics:
- ▶ <https://www.andrew.cmu.edu/user/achoulde/94842/>

Another interaction example

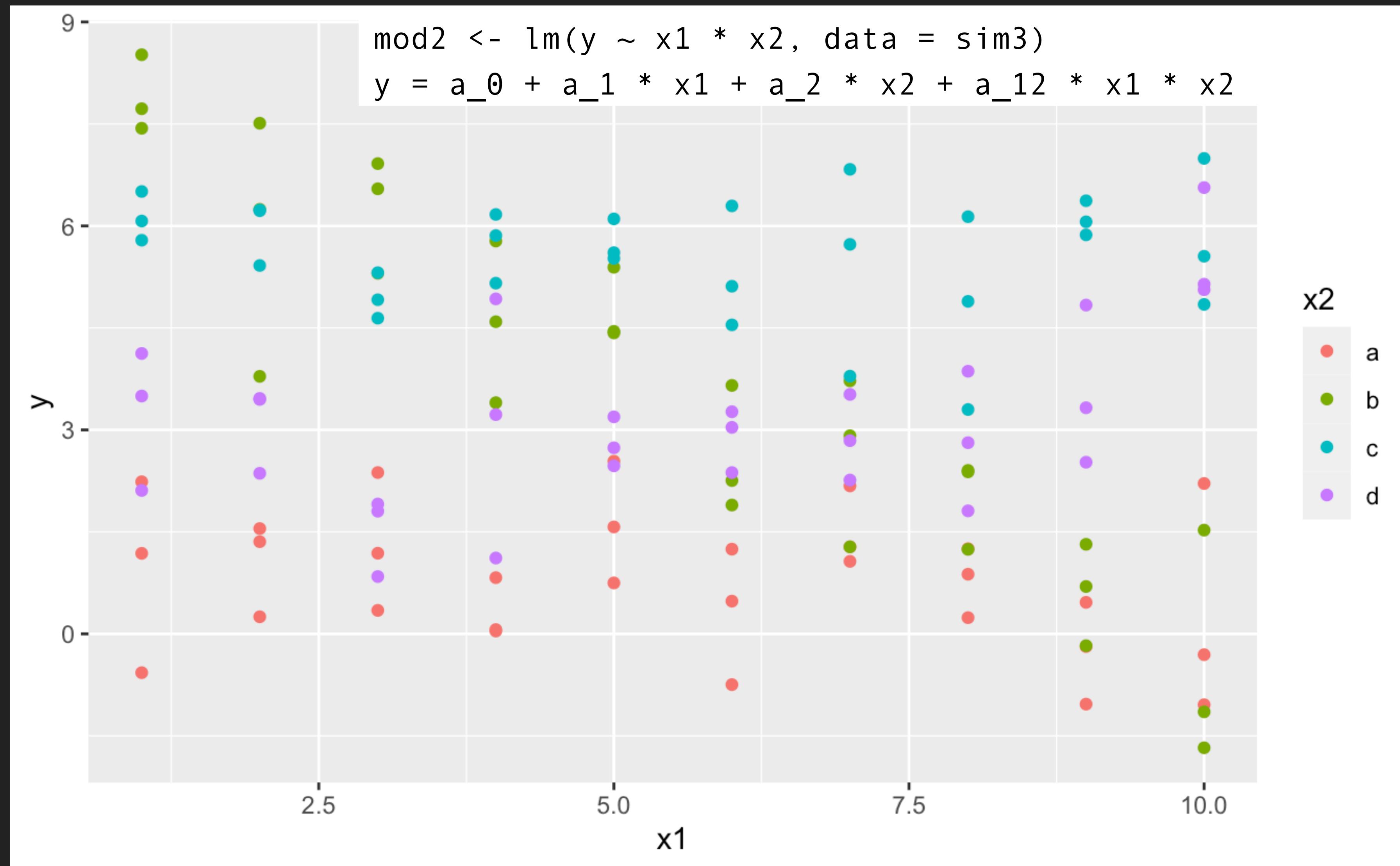
What happens when you combine a continuous and a categorical variable?



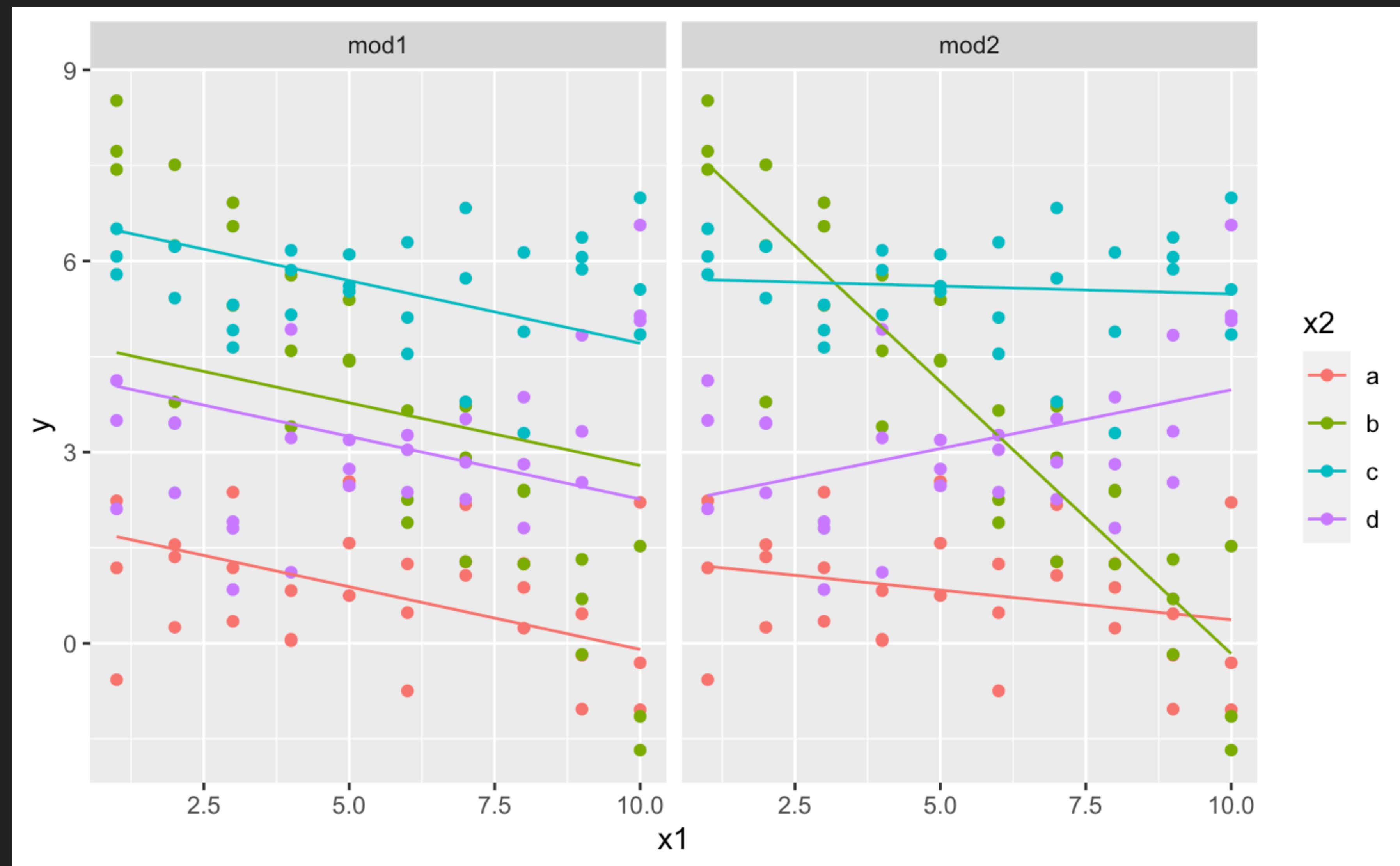
There are two possible models you could fit to this data



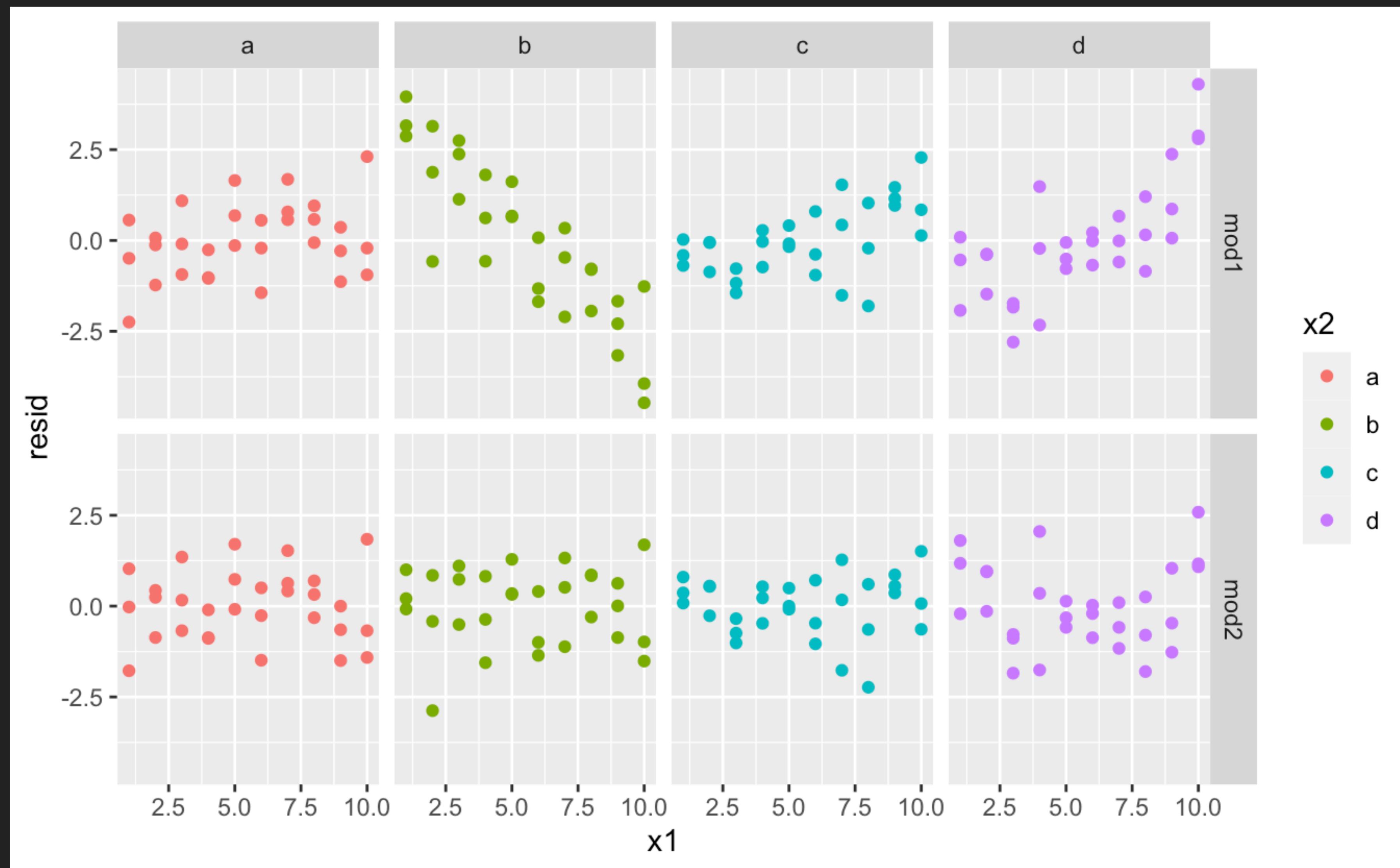
***: Both the interaction and the individual components are included in the model**



The model using * has a different slope and intercept for each line

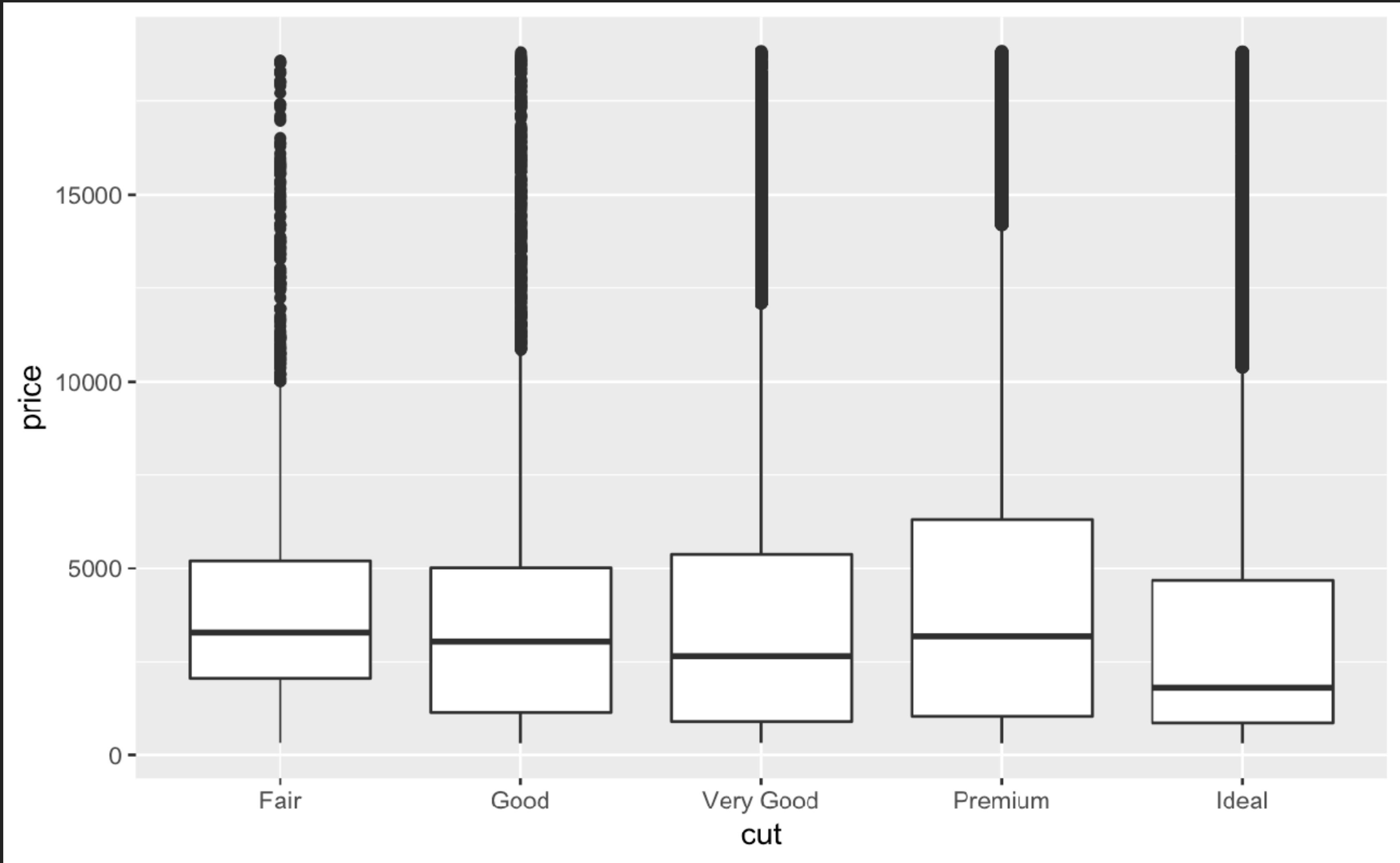


Which model is better for this data?



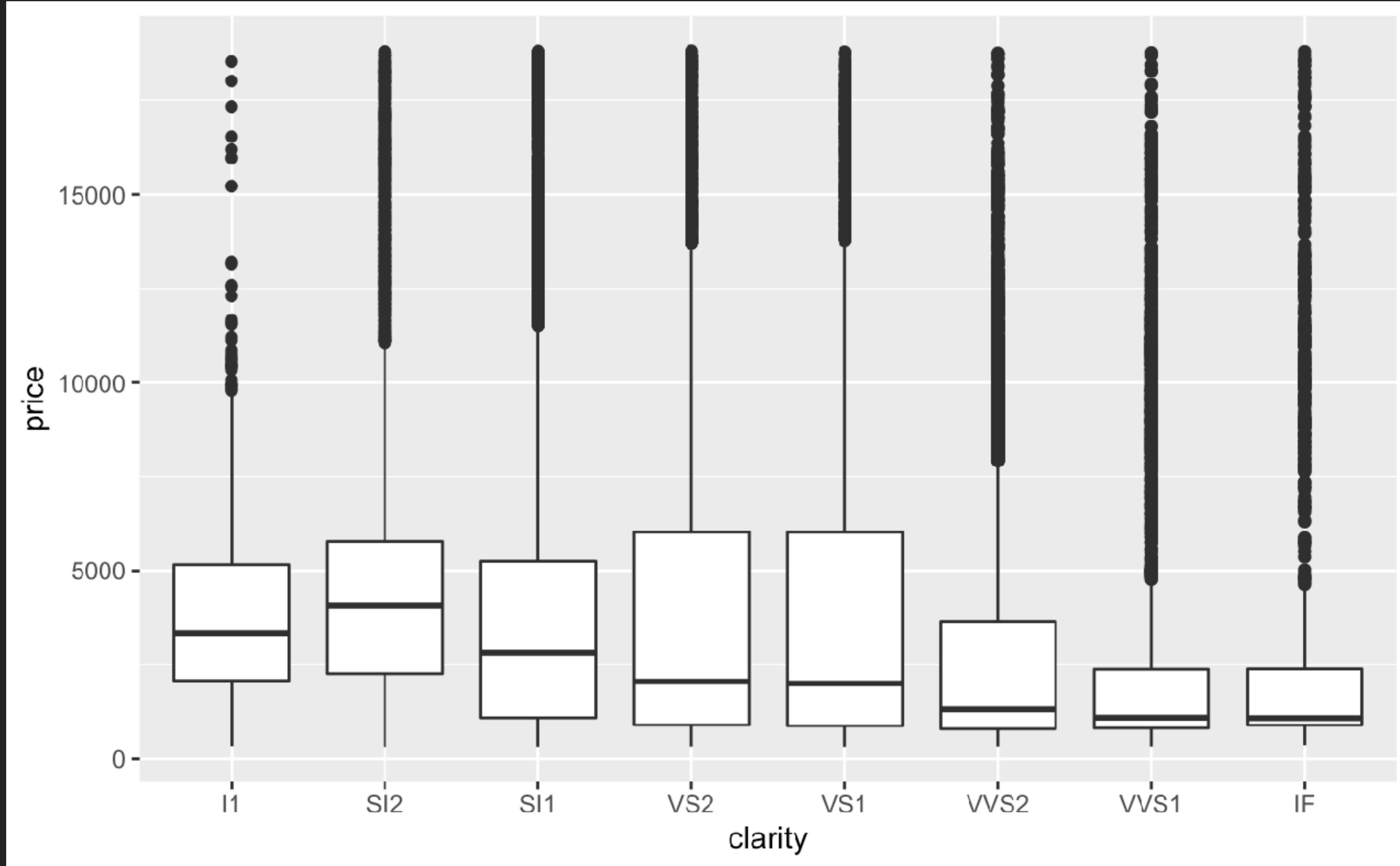
Another example

Why are low quality diamonds more expensive?



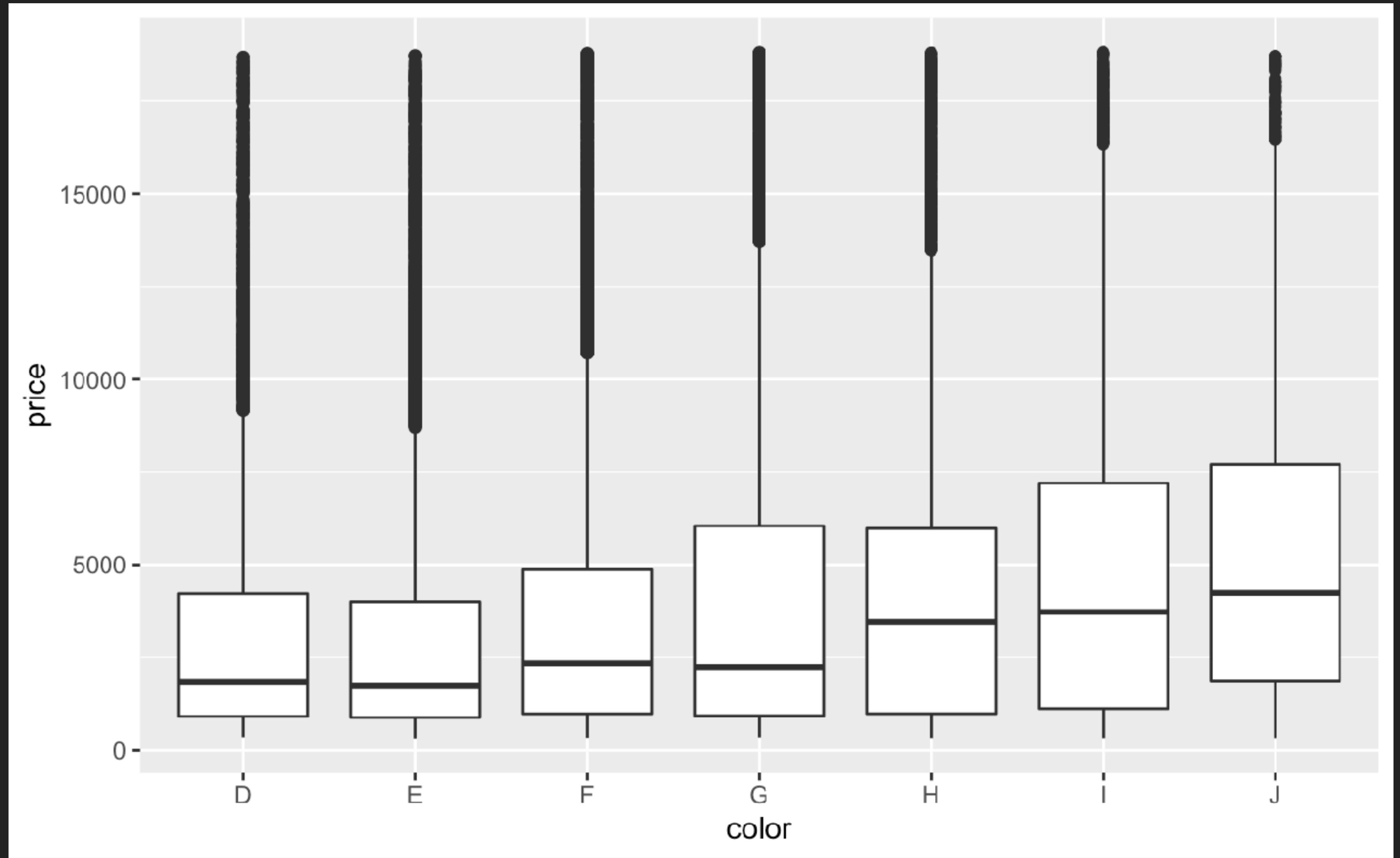
► Fair: worst cut

Why are low quality diamonds more expensive?



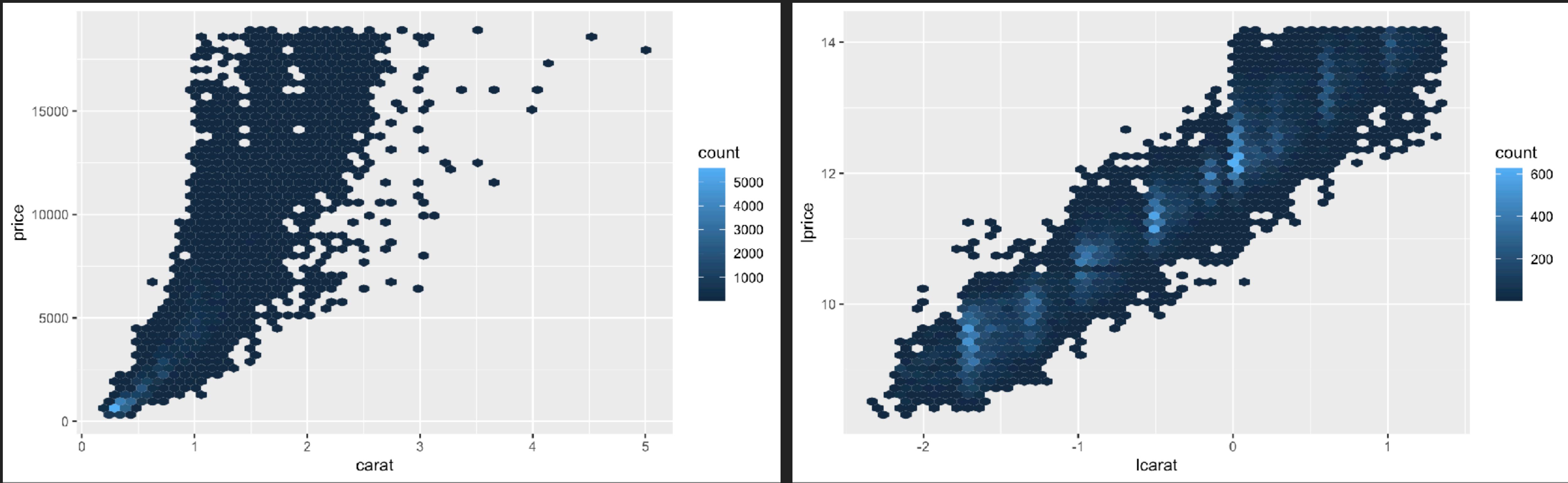
- ▶ I1: inclusions visible to the naked eye (worst clarity)

Why are low quality diamonds more expensive?



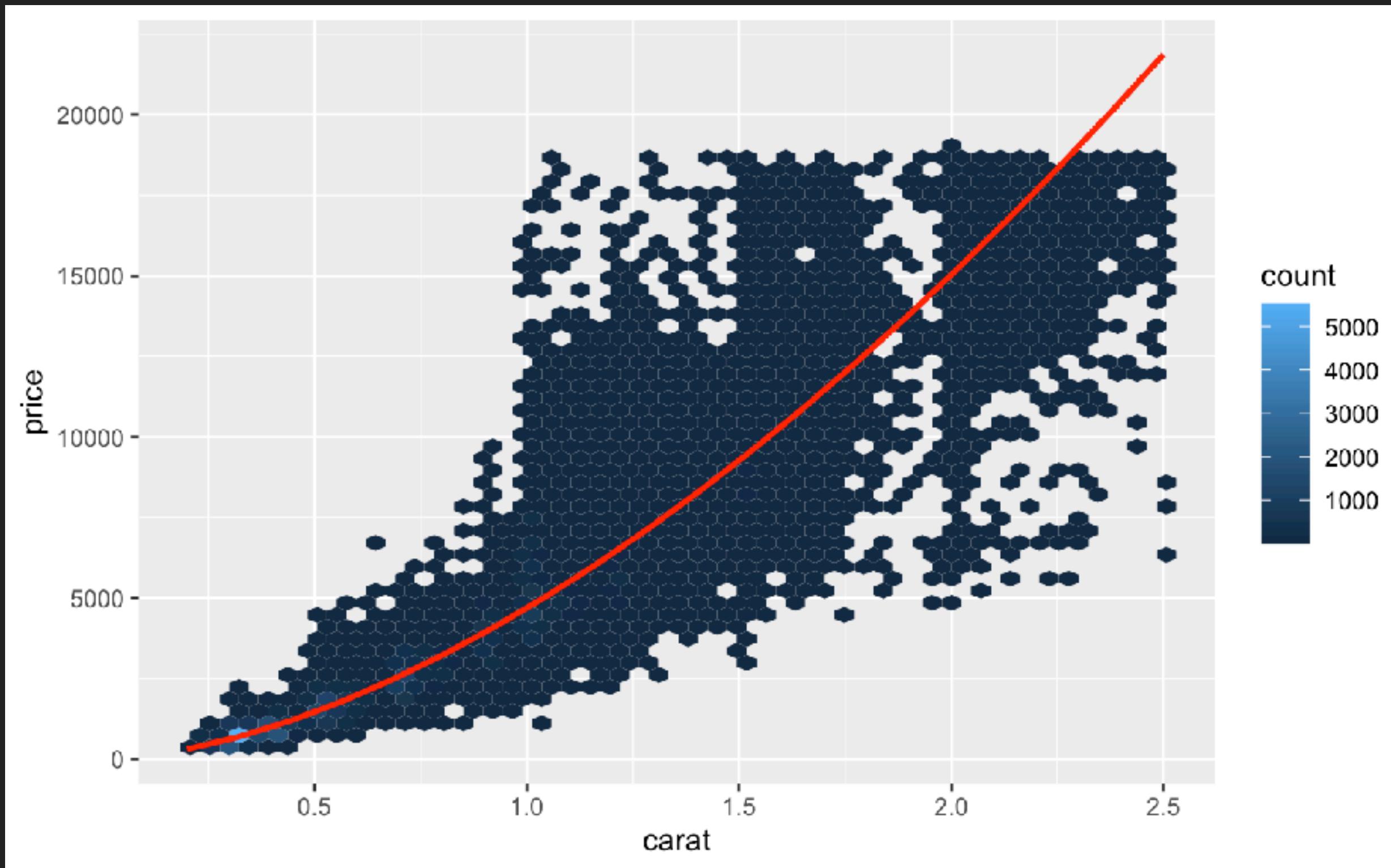
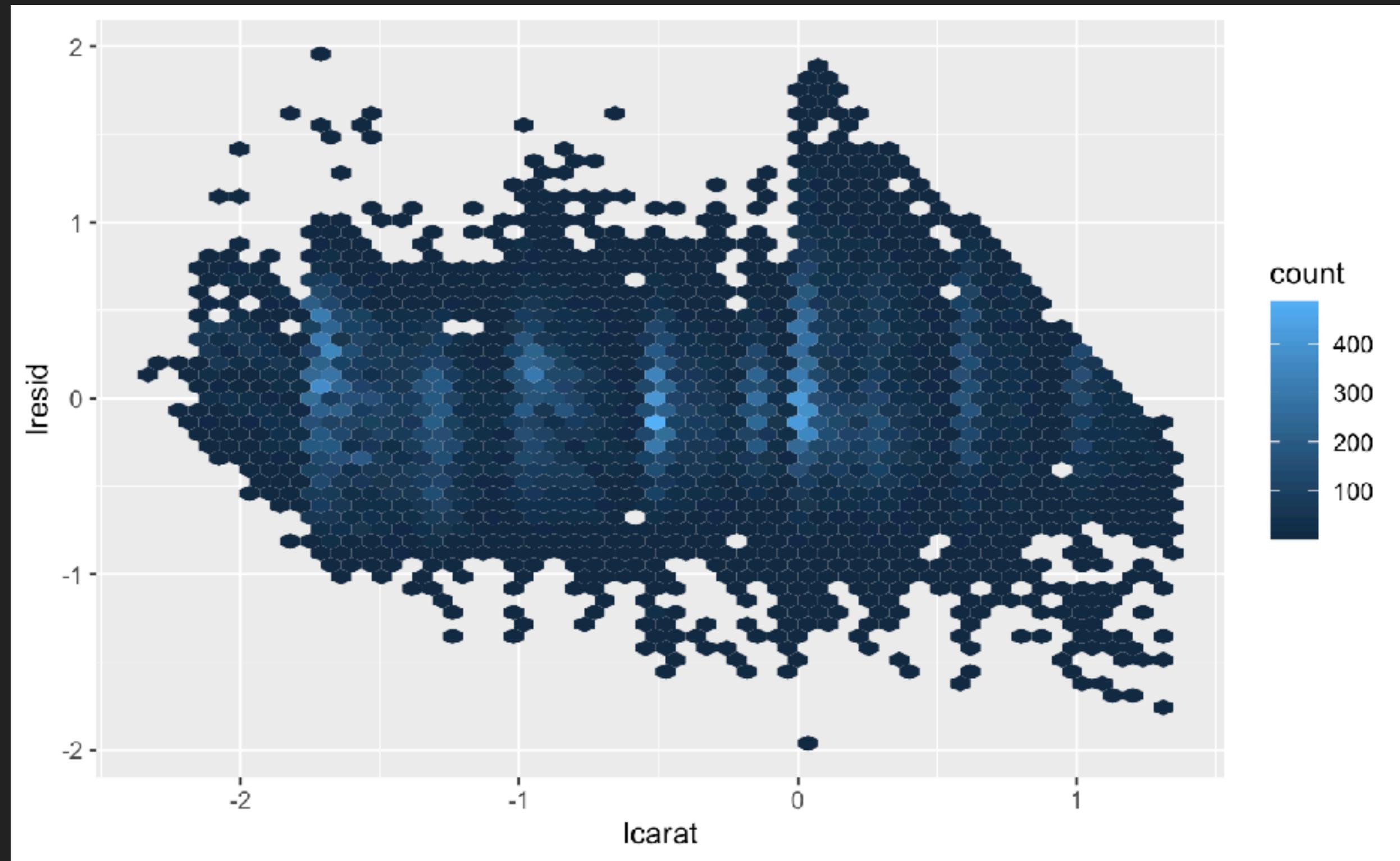
- ▶ J: slightly yellow (worst color)

Because lower quality diamonds tend to be larger



- ▶ The weight of the diamond is the single most important factor for determining the price of the diamond.
 - ▶ Left: raw
 - ▶ Right: log-transformed

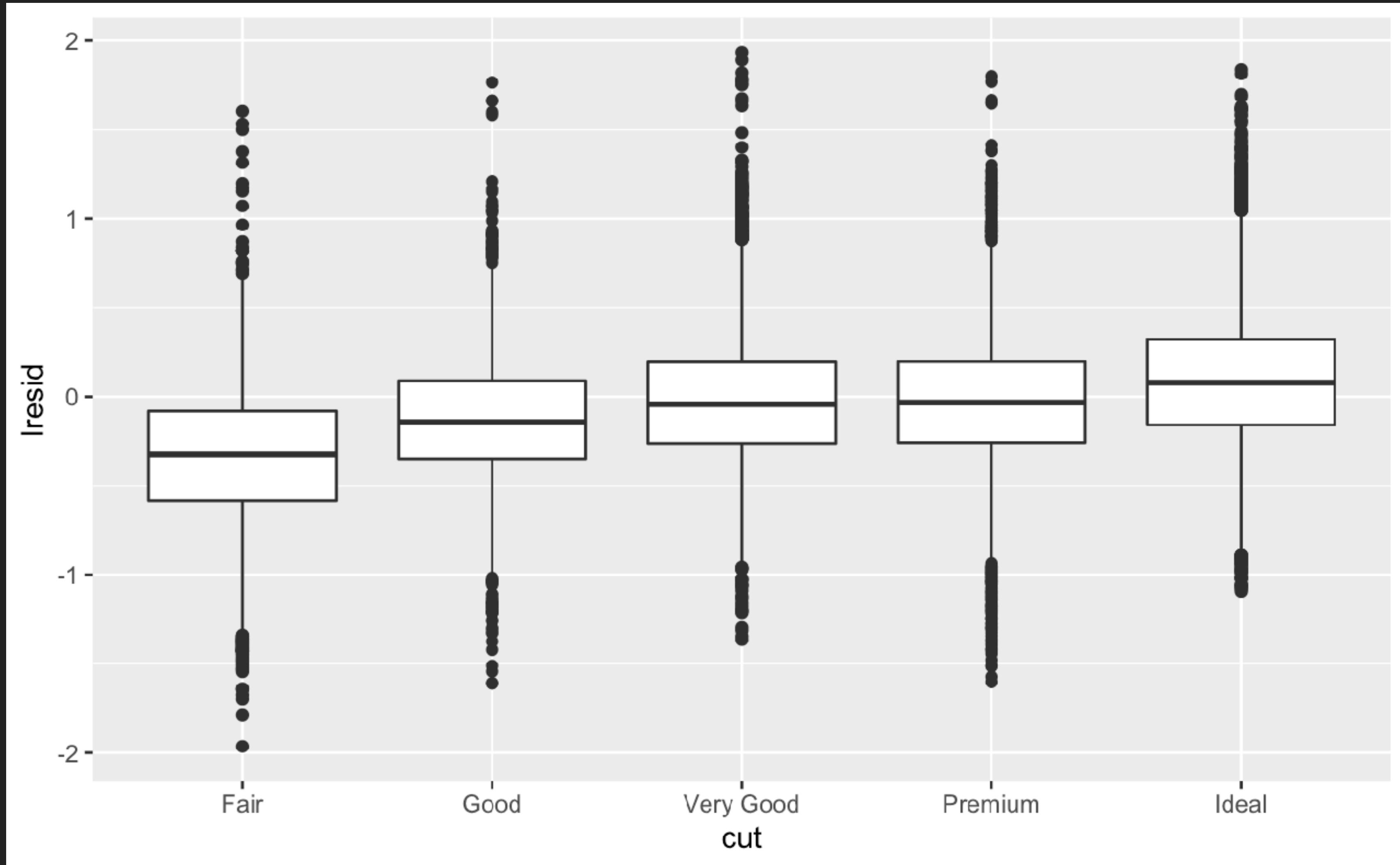
Let's remove that strong linear pattern



```
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
```

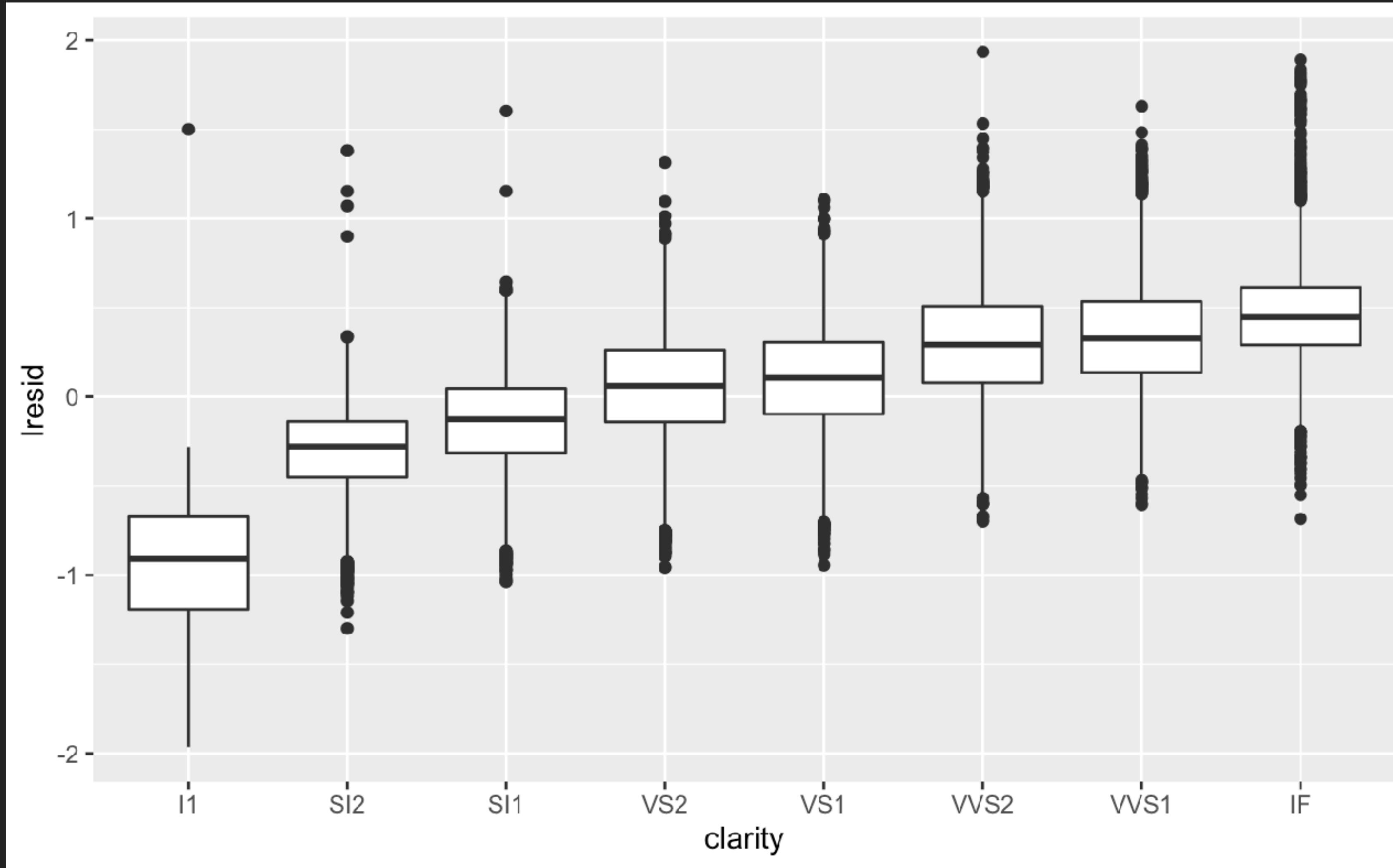
- Residuals confirm that we've successfully removed the strong linear pattern.

Now we see the relationship we expect



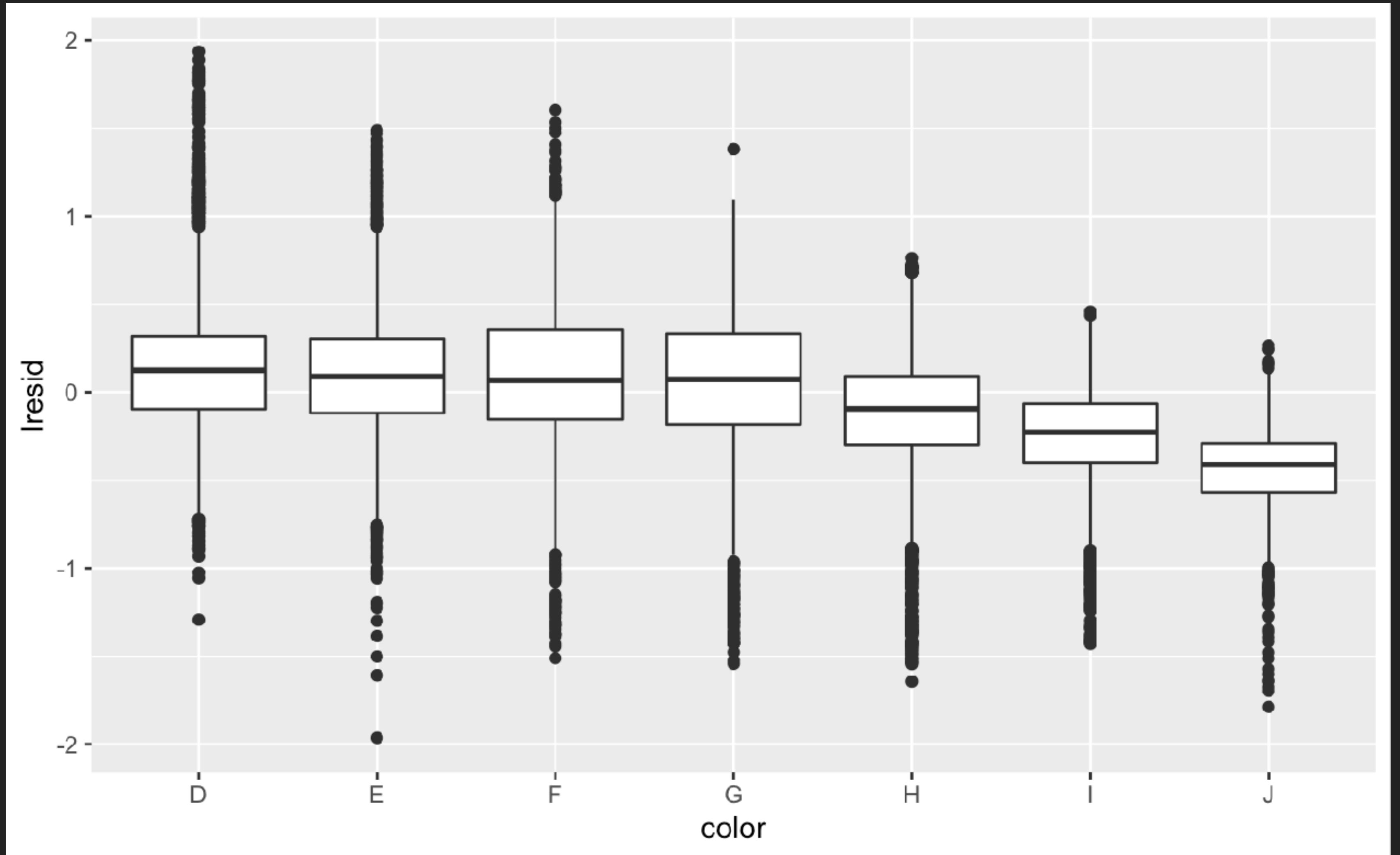
- ▶ Re-did our motivating plots using those residuals instead of price.
- ▶ Fair: worst cut

Now we see the relationship we expect



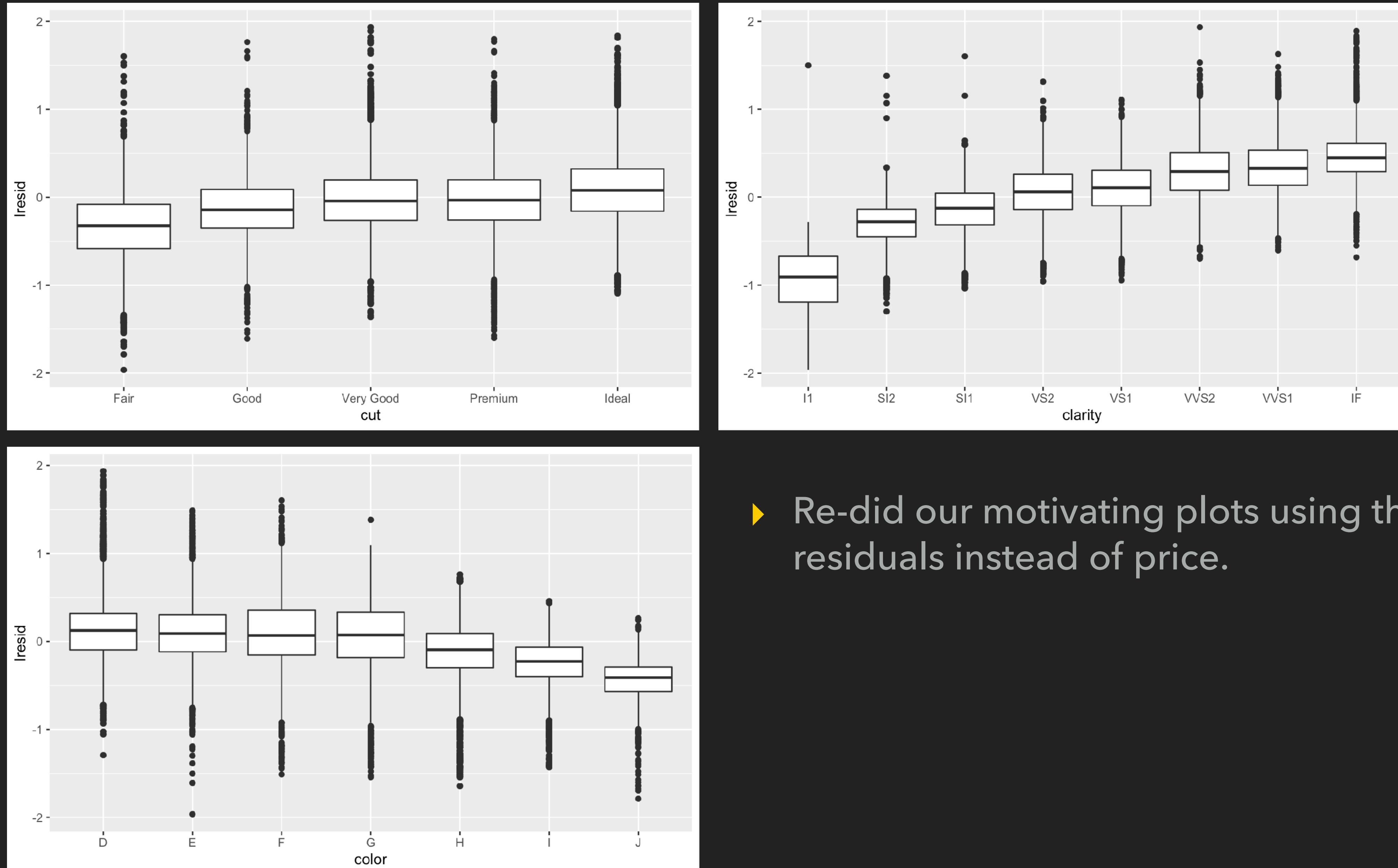
- ▶ I1: inclusions visible to the naked eye (worst clarity)

Now we see the relationship we expect



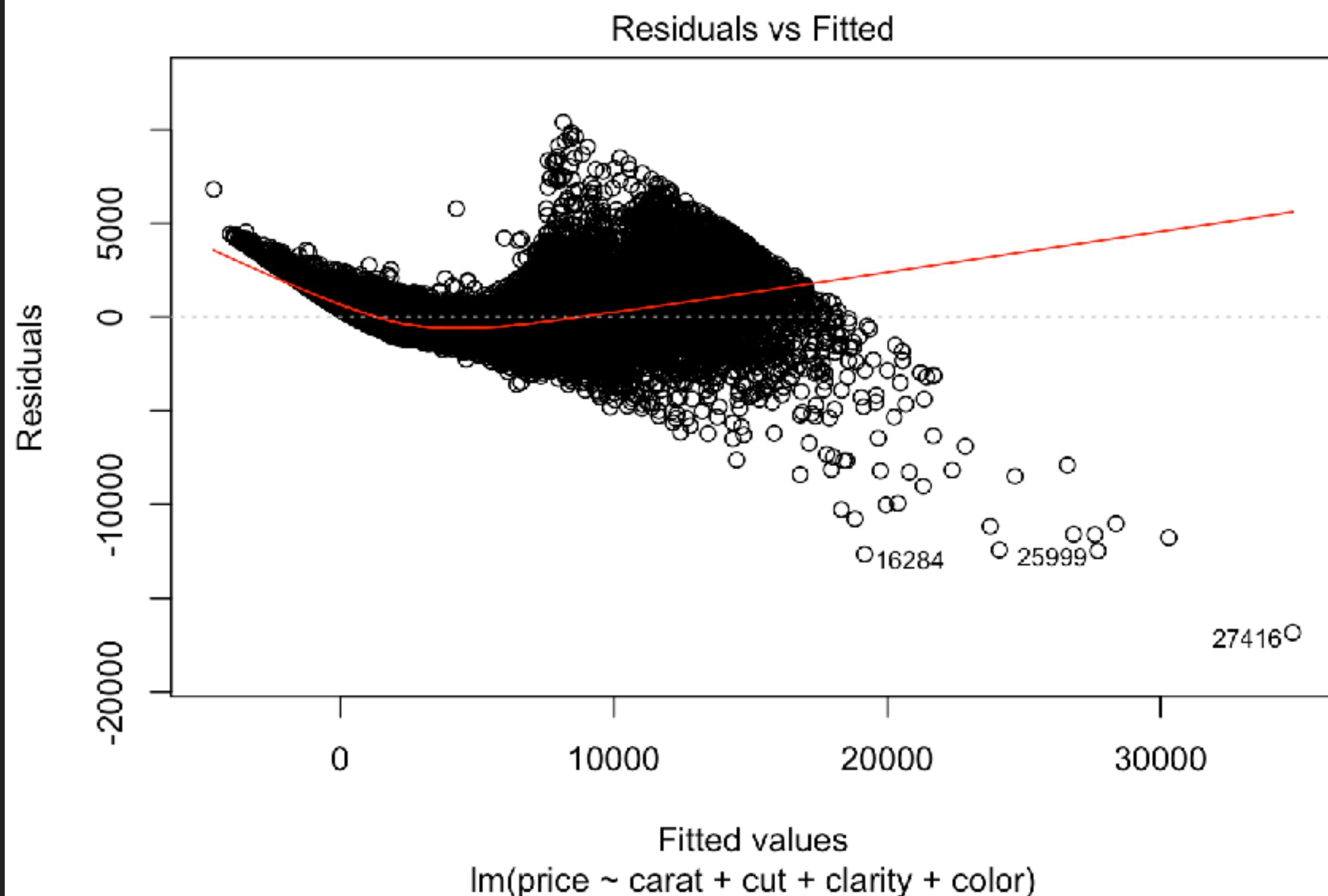
- ▶ J: slightly yellow (worst color)

Now we see the relationship we expect

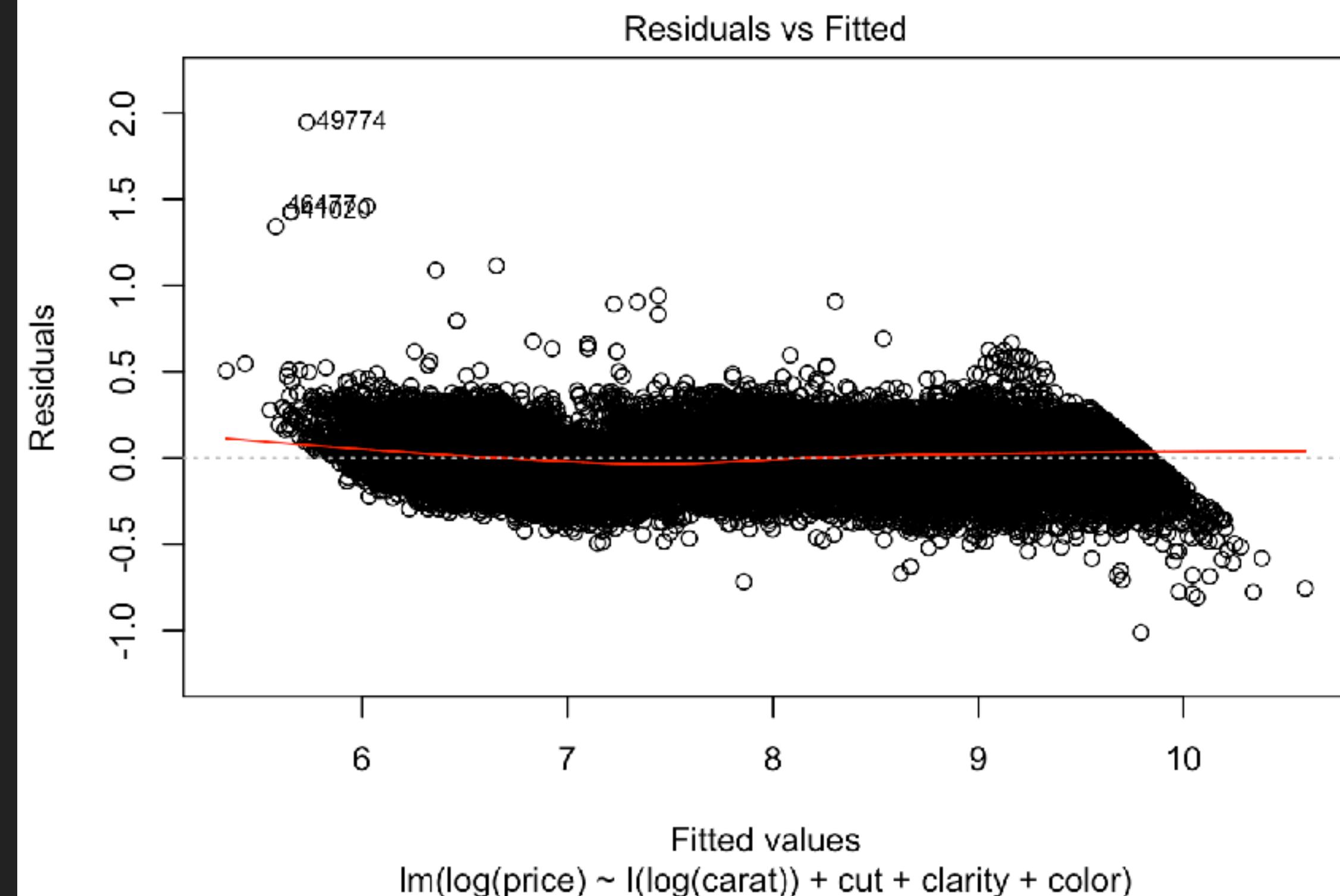


Regression Diagnostics on the Diamonds Example

```
diamonds.lm <- lm(price ~ carat  
+ cut  
+ clarity  
+ color,  
data = diamonds)
```

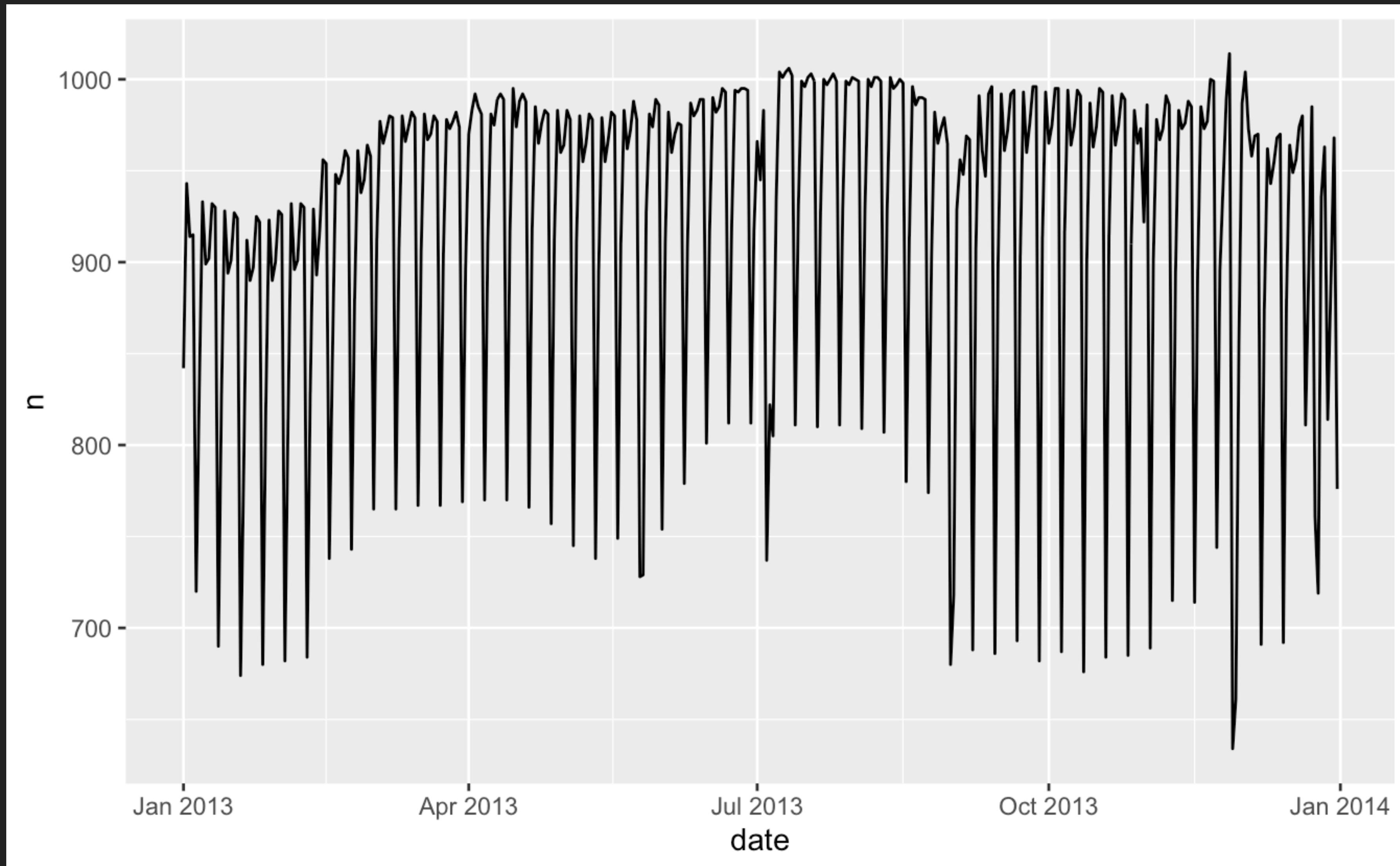


```
diamonds.lm2 <- lm(log(price) ~ I(log(carat))  
+ cut  
+ clarity  
+ color,  
data = diamonds)
```



Another example

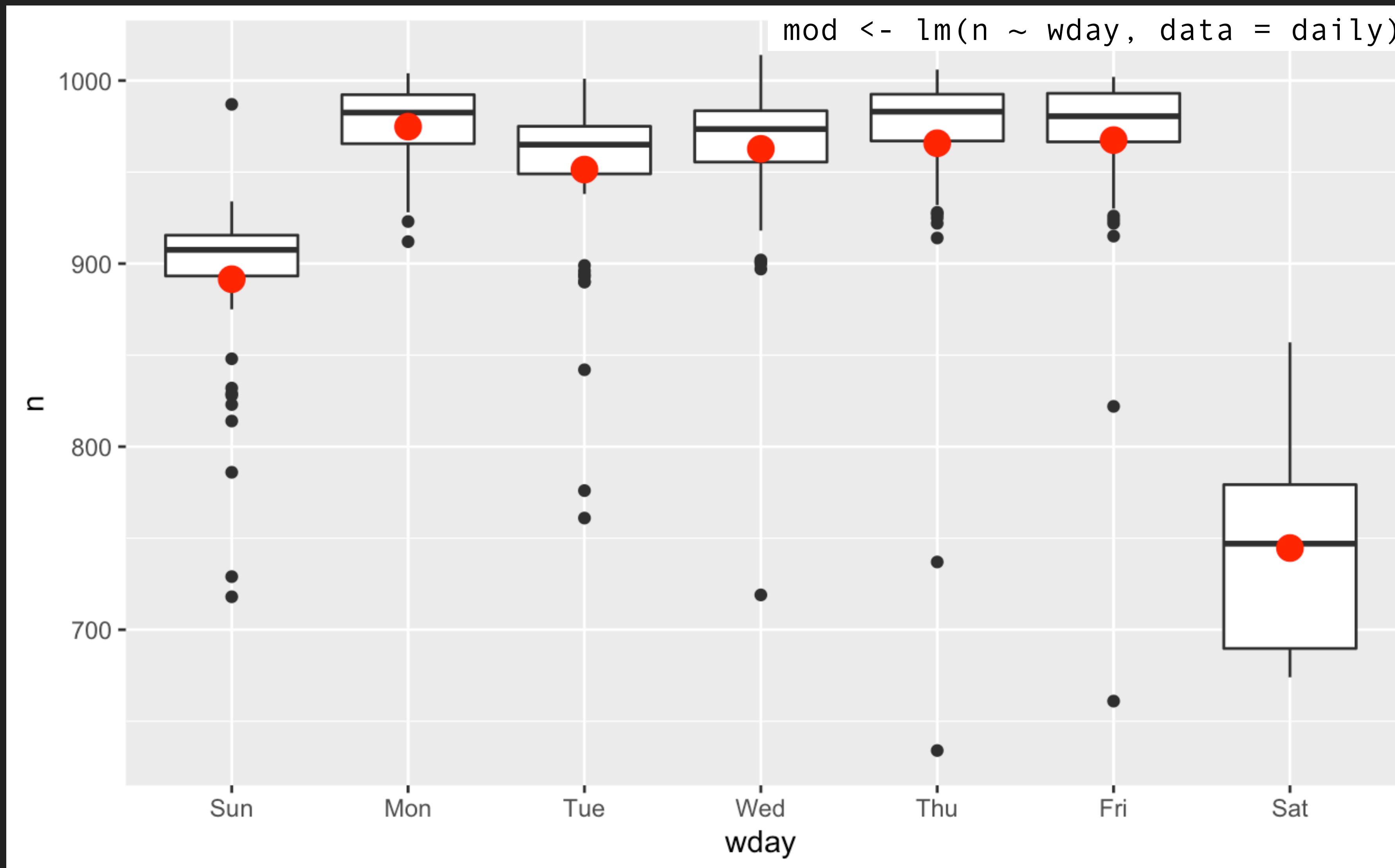
The number of flights that leave NYC per day



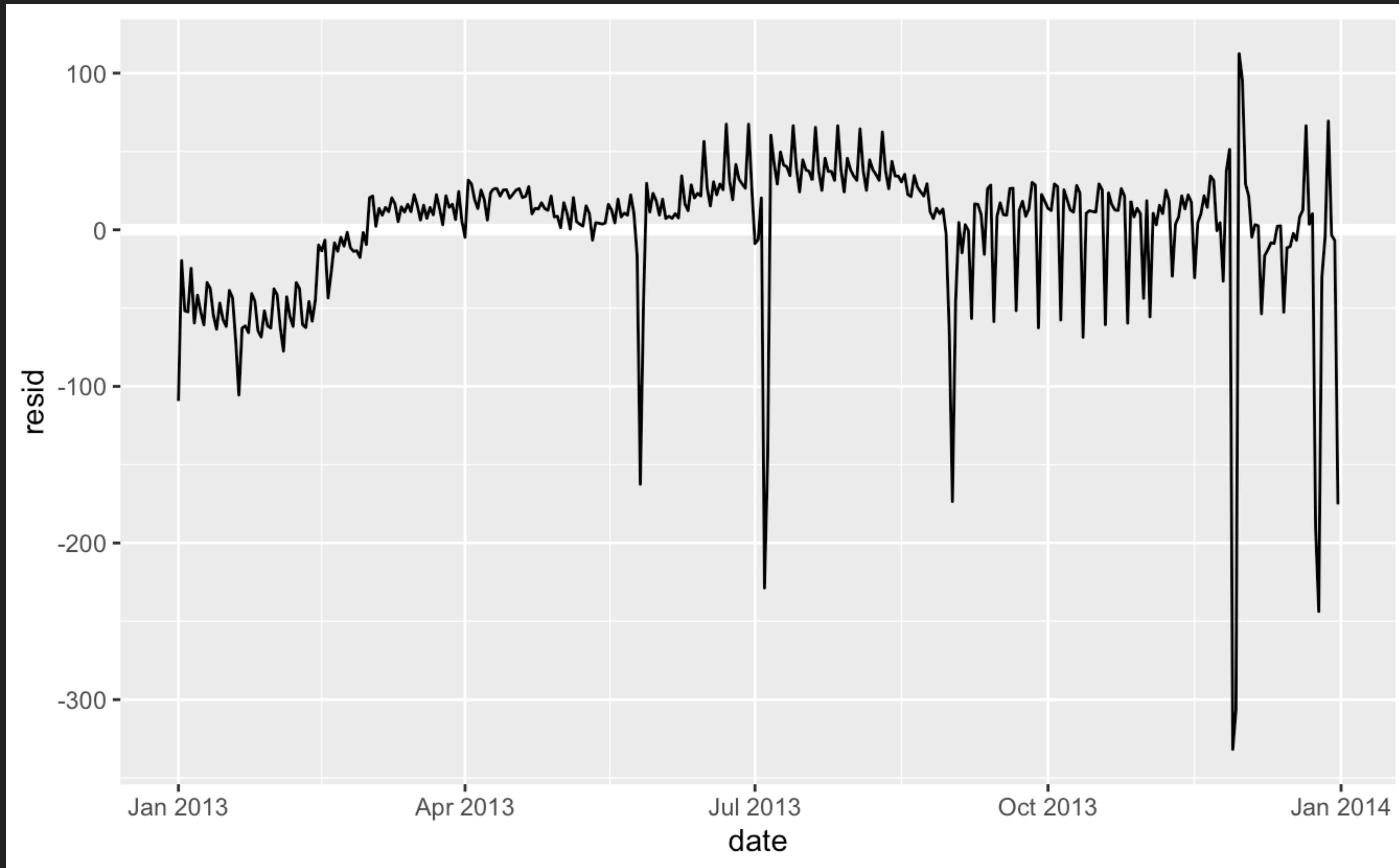
A very strong day-of-week effect dominates the subtler patterns



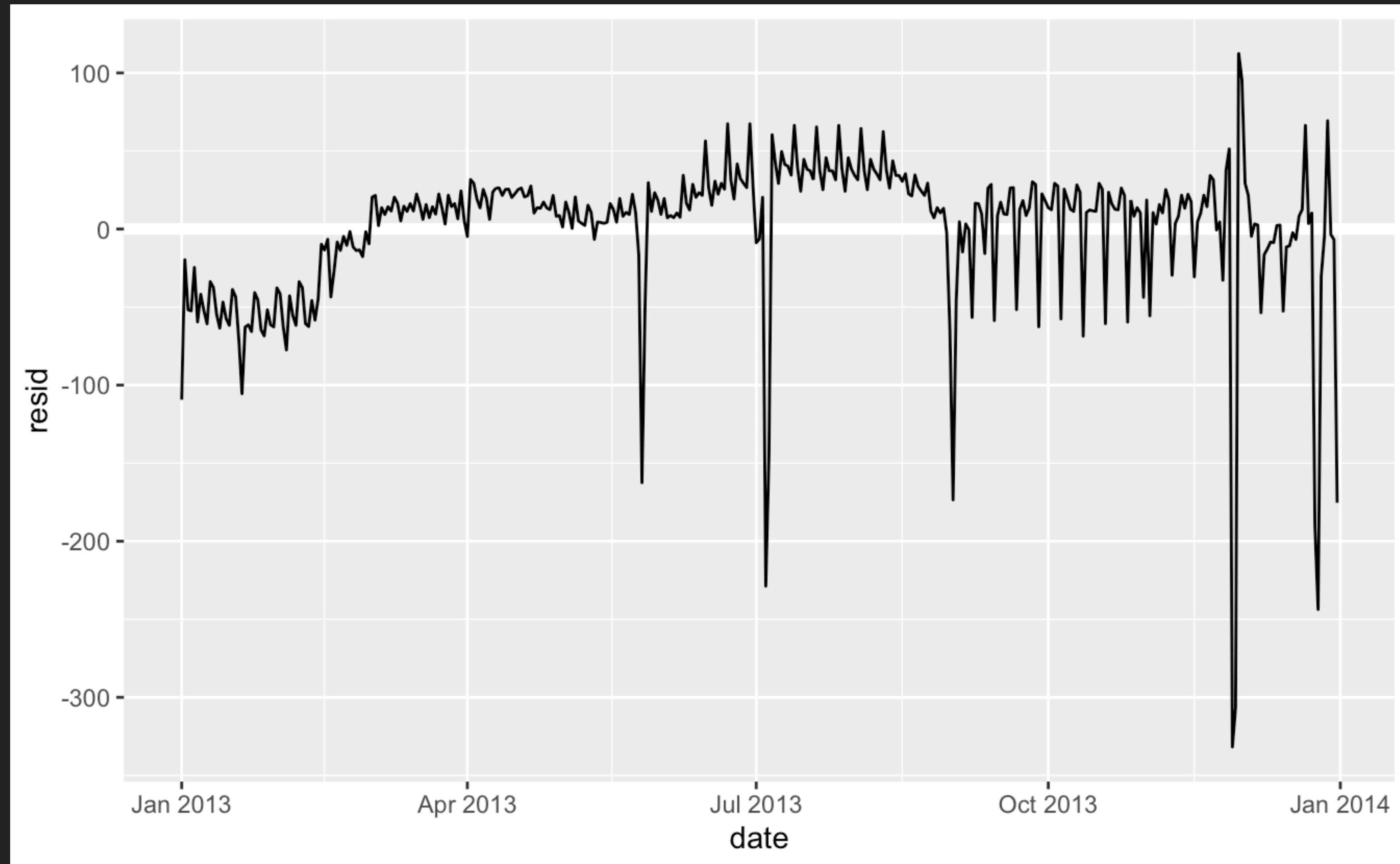
Modeling the week day effect



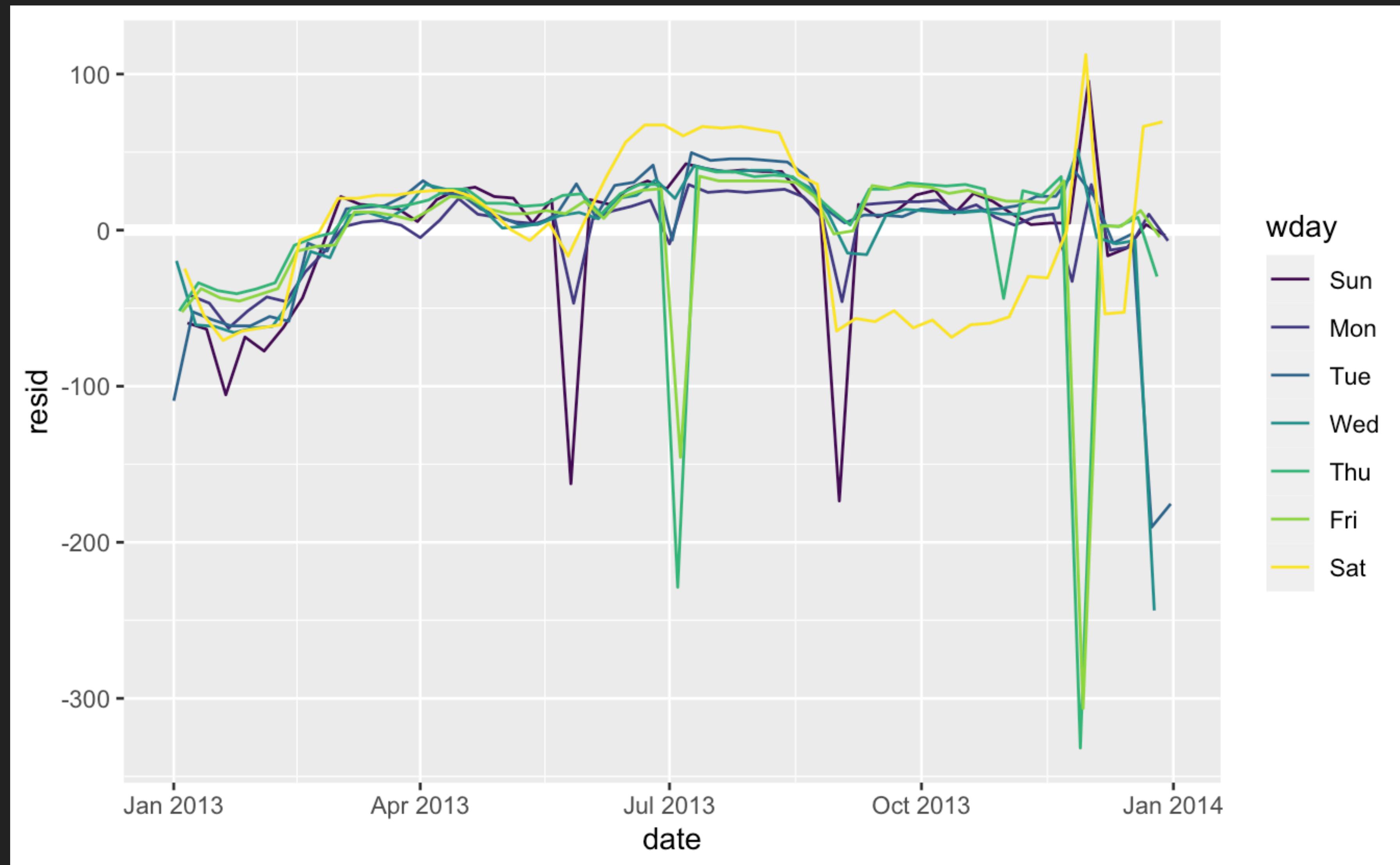
Visualizing the residuals



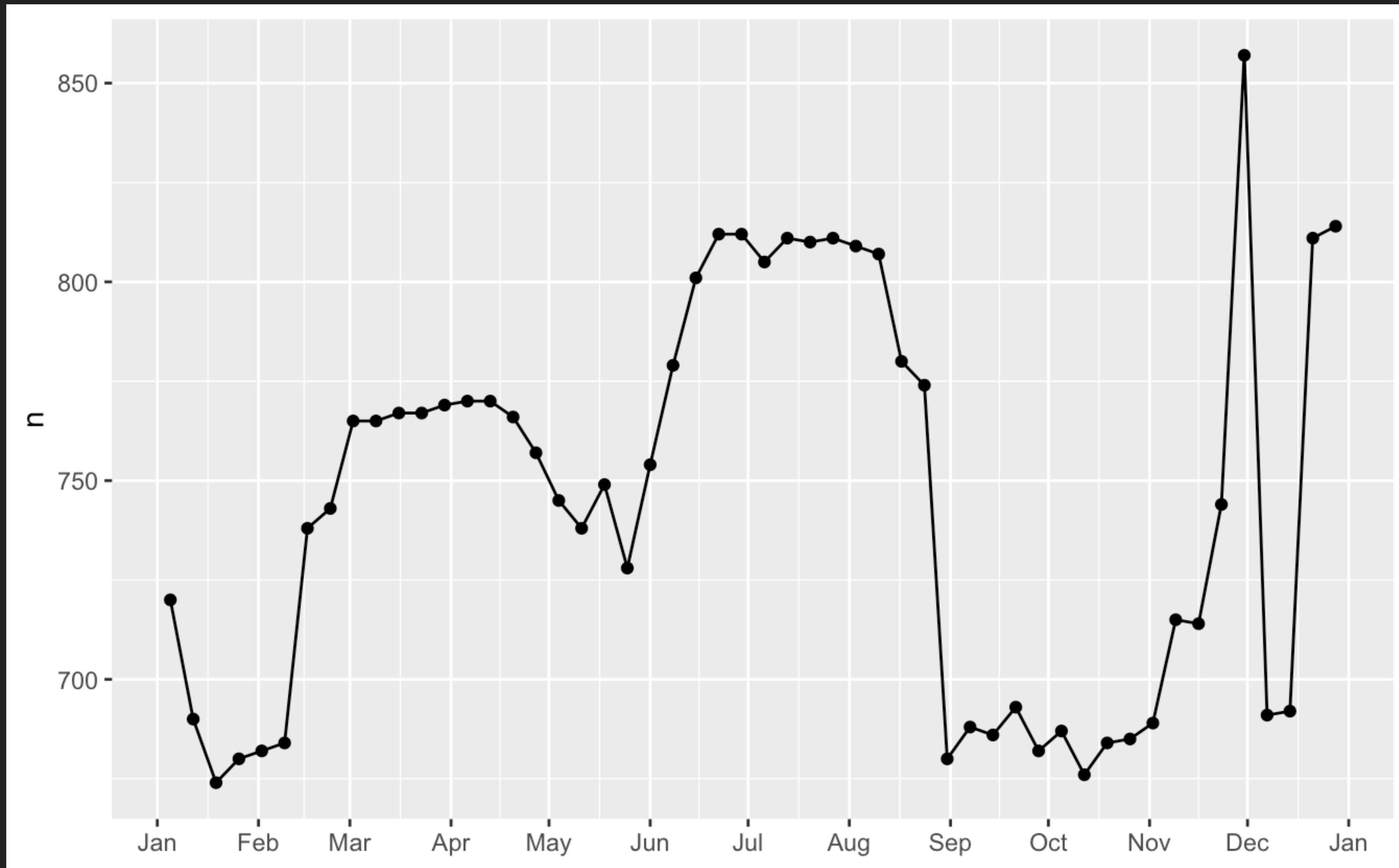
Our model seems to fail starting in June



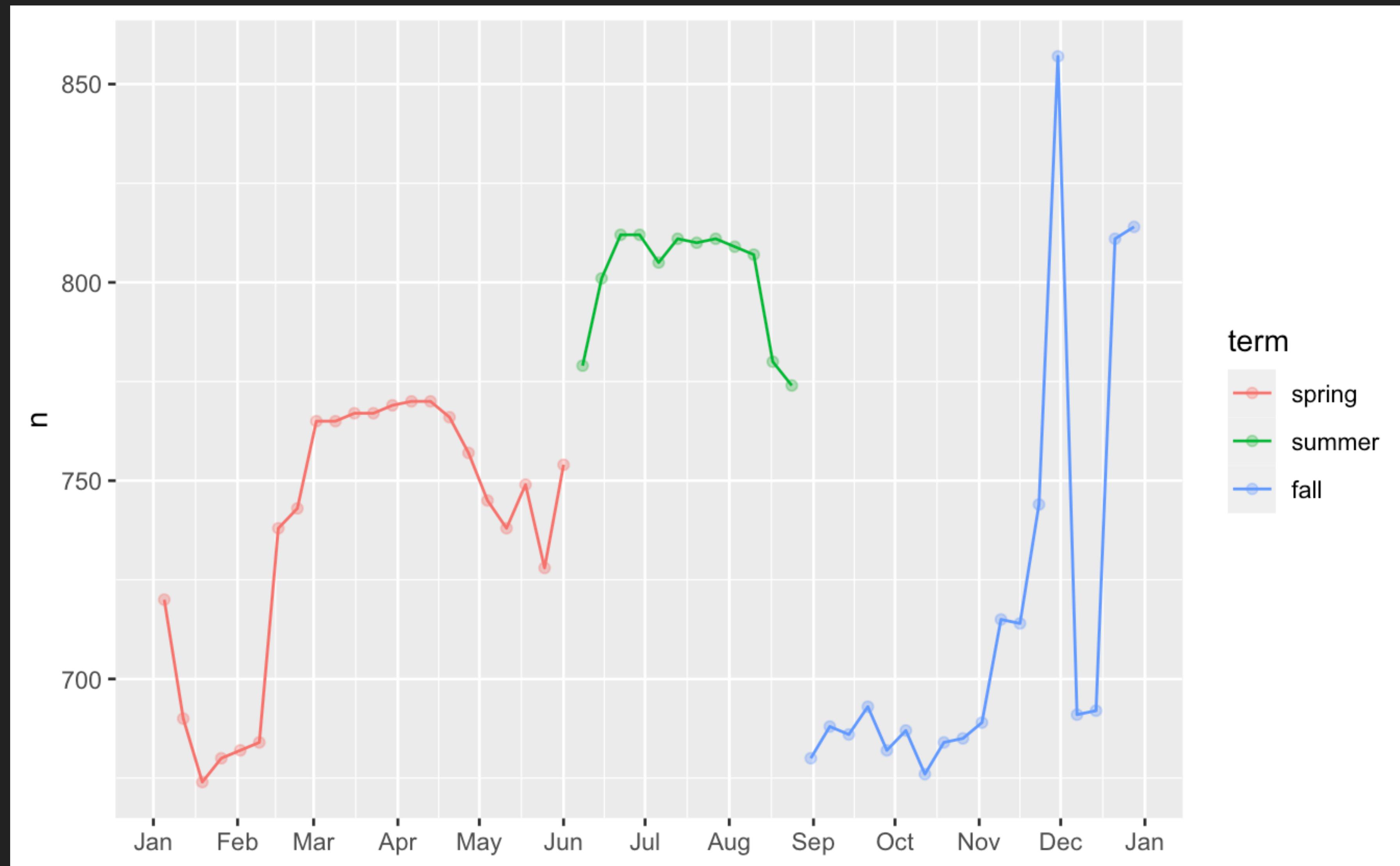
... especially when looking at weekend days



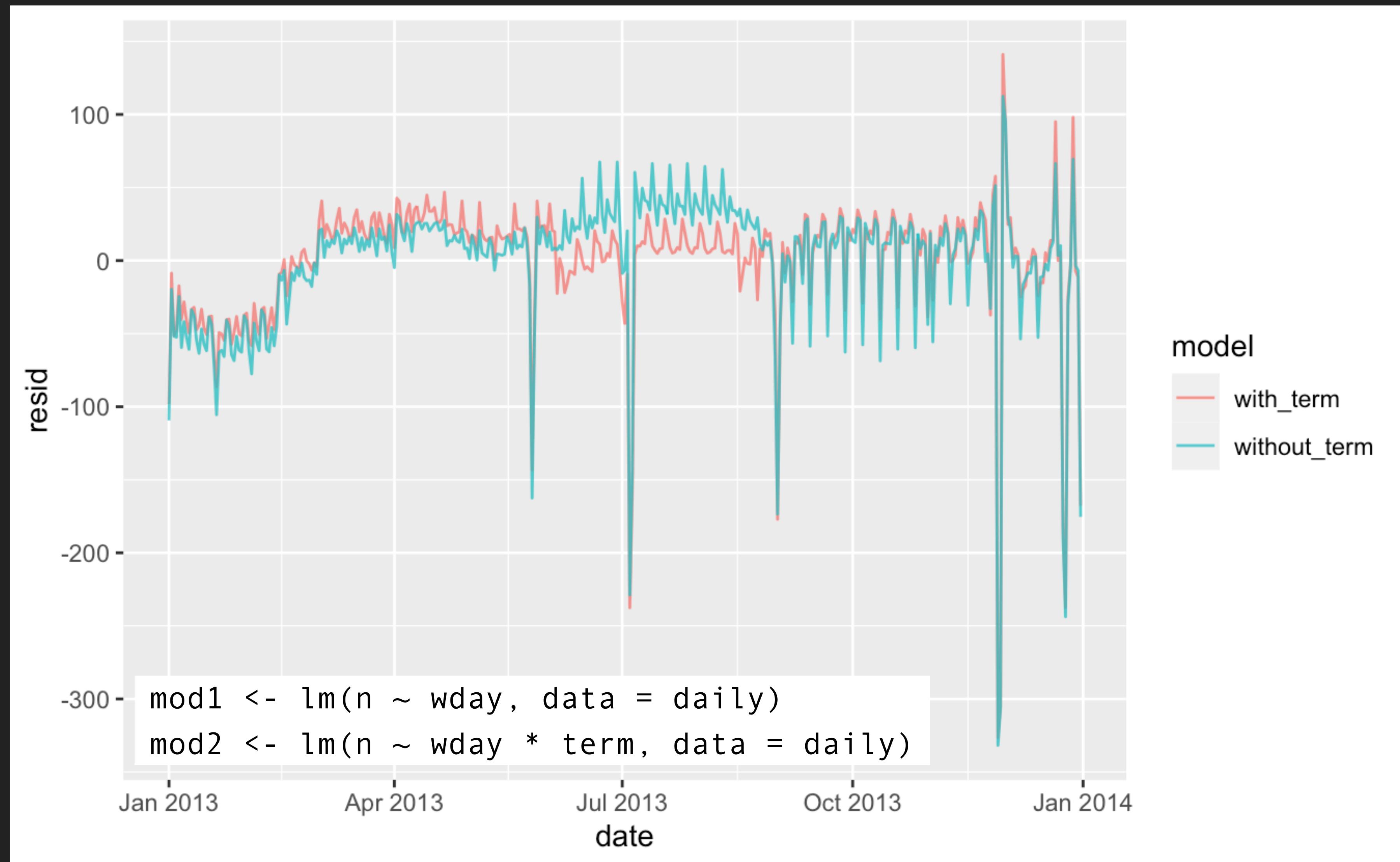
The model fails to accurately predict the number of flights on Saturday



Let's create a “term” variable that roughly captures the three school terms



Fitting a separate day of week effect for each term improves our model



Credits

- ▶ Graphics: Dave DiCello photography (cover)
- ▶ Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. O'Reilly Media.
- ▶ Goodman, S. (2008). A dirty dozen: Twelve p-value misconceptions. In Seminars in Hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ▶ Grolemund, G., & Wickham, H. (2018). R for data science.