
Photo credit: Dave DiCello

Thursday, February 4, 2021

Formulating Research Questions

17-803 Empirical Methods
Bogdan Vasilescu, Institute for Software Research

https://twitter.com/DaveDiCello

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Outline for Today

▸ Get to know each other
▸ Briefly discuss the two readings
▸ Formulating research questions
▸ Activity

2

Who are you?
What is your research?
What would make this course valuable to you?

Homework Readings Discussion

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Bogart, et al “How to Break an API”

▸ What is the point of this paper?
▸ What is the methodology?
▸ Why this choice of method?

▸ Do you trust the results?
▸ Why or why not?
▸ What are the risks of being misled?
▸ How do you evaluate a study with this type

of methodology?
▸ What does it tell about other ecosystems?

5

How to Break an API: Cost Negotiation and

Community Values in Three Software Ecosystems

Christopher Bogart,1 Christian Kästner,1 James Herbsleb,1 Ferdian Thung2

1
Carnegie Mellon University, USA

2
Singapore Management University, Singapore

ABSTRACT
Change introduces conflict into software ecosystems: breaking
changes may ripple through the ecosystem and trigger rework
for users of a package, but often developers can invest addi-
tional e↵ort or accept opportunity costs to alleviate or delay
downstream costs. We performed a multiple case study of
three software ecosystems with di↵erent tooling and philoso-
phies toward change, Eclipse, R/CRAN, and Node.js/npm,
to understand how developers make decisions about change
and change-related costs and what practices, tooling, and
policies are used. We found that all three ecosystems dif-
fer substantially in their practices and expectations toward
change and that those di↵erences can be explained largely by
di↵erent community values in each ecosystem. Our results
illustrate that there is a large design space in how to build
an ecosystem, its policies and its supporting infrastructure;
and there is value in making community values and accepted
tradeo↵s explicit and transparent in order to resolve conflicts
and negotiate change-related costs.

CCS Concepts: Software and its engineering ! Collabora-
tion in software development;

Keywords: Software ecosystems; Dependency management;
semantic versioning; Collaboration; Qualitative research

1. INTRODUCTION
Central planning in software engineering is increasingly giv-
ing way to decentralized development in software ecosystems,
in which developers build on a rich set of third-party contri-
butions, from libraries to community documentation. Devel-
opers can reuse and build upon others’ contributions, often
aided by package management tools that support finding,
installing, and publishing third-party packages within the
ecosystem. Development in such a decentralized environment
can be challenging and can expose friction among loosely
organized parties.

Change introduces conflict into software ecosystems. Break-
ing changes in one package may ripple through the ecosystem

and may trigger rework in many dependent packages. Avoid-
ing changes, however, may result in stale software projects,
in dependencies with known defects, and in growing incom-
patibility with other tools and standards.
The burden of change can be borne by di↵erent partici-

pants: a package maintainer can decide how to make a change,
may invest additional e↵ort to make it easier to adopt the
change, or may decide to accept opportunity costs for not
making a change. Developers depending on other packages
may regularly monitor change in their dependencies and try
to influence their development or may rework their own pack-
ages. Core ecosystem developers might take on responsibility
for vetting or testing packages in some way. End users may
encounter defects if changes are not made or may encounter
installation di�culties if packages in the repository have
become incompatible.
How, when, and by whom changes are performed in an

ecosystem with interdependent packages is subject to (often
implicit) negotiation among diverse participants within the
ecosystem. Each participant has their own priorities, habits
and rhythms, often guided by community-specific values and
policies, or even enforced or encouraged by tools. Ecosystems
di↵er in, for example, to what degree they require consistency
among packages, how they handle versioning, and whether
there are central gatekeepers. Policies and tools are in part
designed explicitly, but in part emerge from ad-hoc decisions
or from values shared by community members. As a result,
community practices may assign burdens of work in ways
that create unanticipated conflicts or bottlenecks.

To understand current practices and how developers might
design or redesign their ecosystems, we have performed a
case study of three open source software ecosystems with
di↵erent philosophies toward change: Eclipse, R/CRAN, and
Node.js/npm. We studied how developers plan, manage, and
negotiate change within each ecosystem, how change-related
costs are allocated, and how developers are influenced by and
influence change-related expectations, policies, and tools in
the ecosystem. In each ecosystem, we studied public policies
and policy discussions and interviewed developers about their
expectations, communication, and decision-making regarding
changes. Our research questions were therefore:

• How do developers make decisions about whether and
when to perform breaking changes and how do they
mitigate or delay costs for other developers? (Section 5)

• How do developers react to and manage change in their
dependencies? (Section 6)

• How do policies, tooling, and community values influ-
ence decision making? (Sections 5.3, 6.3, and 7)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c� 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950325

109

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Raemaekers, et al “Semantic Versioning versus Breaking Changes”

▸ What is the point of this paper?
▸ What is the methodology?
▸ Why this choice of method?

▸ Do you trust the results?
▸ Why or why not?
▸ What are the risks of being misled?
▸ How do you evaluate a study with this type

of methodology?
▸ What does it tell about other ecosystems?

6

Semantic Versioning versus Breaking Changes:
A Study of the Maven Repository

Steven Raemaekers
Software Improvement Group
Amsterdam, The Netherlands
Email: s.raemaekers@sig.eu

Arie van Deursen
Technical University Delft

Delft, The Netherlands
Email: arie.vandeursen@tudelft.nl

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands

Email: j.visser@sig.eu

Abstract—For users of software libraries or public program-
ming interfaces (APIs), backward compatibility is a desirable
trait. Without compatibility, library users will face increased
risk and cost when upgrading their dependencies. In this
study, we investigate semantic versioning, a versioning scheme
which provides strict rules on major versus m inor and patch
releases. We analyze seven years of library release history in
Maven Central, and contrast version identifiers with actual
incompatibilities. We find that around one third of all releases
introduce at least one breaking change, and that this figure
is the same for minor and major releases, indicating that
version numbers do not provide developers with information in
stability of interfaces. Additionally, we find that the adherence
to semantic versioning principles has only marginally increased
over time. We also investigate the use of deprecation tags and
find out that methods get deleted without applying deprecated
tags, and methods with deprecated tags are never deleted. We
conclude the paper by arguing that the adherence to semantic
versioning principles should increase because it provides users
of an interface with a way to determine the amount of rework
that is expected when upgrading to a new version.

Keywords-Semantic versioning, Software libraries

I. INTRODUCTION

For users of software libraries or public programming
interfaces (APIs), backward compatibility is a desirable trait.
Without compatibility, library users will face increased risk
and cost when upgrading their dependencies. In spite of
these costs and risks, library upgrades may be desirable or
even necessary, for example if the newer version contains
required additional functionality or critical security fixes.
To conduct the upgrade, the library user will need to know
whether there are incompatibilities, and, if so, which ones.

Determining whether there are incompatibilities, however,
is hard to do for the library user (it is, in fact, undecidable in
general). Therefore, it is the library creator’s responsibility
to indicate the level of compatibility of a library update.
One way to inform library users about incompatibilities is
through version numbers. As an example, semantic ver-
sioning1 (semver) suggests a versioning scheme in which
three digit version numbers MAJOR.MINOR.PATCH have
the following semantics:

1http://semver.org

• MAJOR: This number should be incremented when
incompatible API changes are made;

• MINOR: This number should be incremented when
functionality is added in a backward-compatible man-
ner;

• PATCH: This number should be incremented when
backward-compatible bug fixes are made.

These principles were formulated in 2010 by (GitHub
founder) Tom Preston-Werner.2 As argued in the semantic
versioning specification, “these rules are based on but
not necessarily limited to pre-existing widespread common
practices in use in both closed and open-source software.”

But how common are these practices in reality? Are
such changes just harmless, or do they actually hurt by
causing rework? Do breaking changes mostly occur in major
releases, or do they occur in minor releases as well? Do
major and minor releases differ in terms of typical size?
Furthermore, for the breaking changes that do occur, to
what extent are they signalled through, e.g., deprecation
tags? Finally, does the presence of breaking changes affect
the time (delay) between library version release and actual
adoption of the new release in clients?

In this paper, we seek to answer questions like these. To
do so, we make use of seven years of versioning history as
present in the collection of Java libraries available through
Maven’s central repository.3 Our dataset comprises around
150,000 binary jar files, corresponding to around 22,000
different libraries for which we have 7 versions on average.
Furthermore, our dataset includes cross-usage of libraries
(libraries use other libraries in the dataset), permitting us to
study the impact of incompatibilities in concrete clients as
well.

As an approximation of the (undecidable) notion of back-
ward compatbility, we use binary compatibility as defined in
the Java language specification. This is an underestimation,
since binary incompatibilities are certainly breaking, but
there are likely to be different (semantic) incompatibilities

2Github actively promotes semver and encourages all 10,000,000
projects hosted by GitHub to adopt it.

3http://search.maven.org/

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE
DOI 10.1109/SCAM.2014.30

215

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE
DOI 10.1109/SCAM.2014.30

215

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 04,2021 at 15:33:33 UTC from IEEE Xplore. Restrictions apply.

I. Formulating Research Questions

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Meet Jane

▸ Jane’s intuition is that the fisheye-view file navigator
is more efficient for file navigation than a than
traditional file navigator.
▸ File navigation requires a lot of scrolling and many clicks to

find files.
▸ “Fisheye-views” display information in a compact format that

could potentially reduce the amount of scrolling required.

▸ Critics argue:
▸ difficult to read
▸ developers won’t adopt

▸ Jane’s research goal: collect evidence that supports
or refutes her intuition

8

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Meet Joe

▸ Joe is interested in how developers in
industry use (or not) UML diagrams
during software design.
▸ His professors recommended UML.
▸ His EvilCorp internship indicates that UML is

rarely used.

▸ Joe’s research goals:
▸ Explore how widely UML diagrams are used

in industry.
▸ Explore how these diagrams are used as

collaborative shared artifacts during design.

9

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

From Problems To Research Questions

10

“How widely are UML diagrams
used as collaborative shared
artifacts during design?”

Joe

Jane

“Is a fisheye-view file navigator
more efficient than the traditional
view for file navigation?”

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

The Most Obvious Question Is Not Always the Best Choice for a Starting Point

11

Jane

“Is a fisheye-view file
navigator more efficient
than the traditional view
for file navigation?”

▸ Do we already know that some people
(who?) need to do file navigation?

▸ What does file navigation mean exactly?
▸ Under what circumstances do these

people do file navigation?
▸ Is efficiency (measured how?) a relevant

goal for these people?

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

The Most Obvious Question Is Not Always the Best Choice for a Starting Point

▸ What’s a “collaborative shared artifact”?
▸ Can we reliably identify one?
▸ Can we reliably say which things are and

aren’t UML diagrams?

12

“How widely are UML
diagrams used as
collaborative shared
artifacts during design?”

Joe

Both questions are vague, because they make assumptions about the
phenomena to be studied, and kinds of situation in which these
phenomena occur.

Some possible (better) questions Jane and Joe could have asked

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Exploratory Questions

15

▸ Existence questions
“Is file navigation something that (certain types of
programmers) actually do?”
“Is efficiency actually a problem in file navigation?”
“Do collaborative shared artifacts actually exist?”

▸ Description and Classification questions
“How can we measure efficiency for file navigation?”
“What are all the types of collaborative shared artifacts?”

▸ Descriptive-Comparative questions
“How do fisheye views differ from conventional views?”
“How do UML diagrams differ from other
representations of design information?”

Outcomes:
▸ Clearer understanding

of the phenomena

▸ More precise definitions
of the theoretical terms

▸ Evidence that we can
measure them

▸ Evidence that the
measures are valid

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Base-Rate Questions (Normal Patterns of Occurrence of Phenomena)

16

▸ Frequency and distribution questions
“How many distinct UML diagrams are created in
software development projects in large software
companies?”

▸ Descriptive-Process questions
“How do programmers navigate files using
existing tools?”

Outcomes:
▸ Basis for saying whether

a particular situation is
normal or unusual

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Relationship Questions

17

▸ Relationship questions
“Does efficiency in file navigation correlate with the
programmer’s familiarity with the programming
environment?”
“Do managers’ claims about how often they use UML
correlate with the actual use of UML?”

Outcomes:
▸ Establish that

occurrence of one
phenomenon is related
to occurrence of
another

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Causality Questions

18

▸ Causality questions
“Do fisheye-views cause an improvement in
efficiency for file navigation?”

▸ Causality-Comparative questions
“Do fisheye-views cause programmers to be
more efficient at file navigation than
conventional views? ”

▸ Causality-Comparative Interaction questions
“Do fisheye-views cause programmers to be more
efficient at file navigation than conventional views
when programmers are distracted, but not otherwise?”

Outcomes:
▸ Explain why a relationship

holds by attempting to
identify a cause and effect

▸ Understand how context
affects a cause–effect
relationship

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Design Questions

19

▸ Design questions
“What is an effective way for teams to represent
design knowledge to improve coordination?”

Outcomes:
▸ Design better procedures

and tools for carrying out
some activity

▸ Design suitable social or
regulatory policies

A long term research program in an applied discipline
(e.g., SE) typically involves a mix of both types of questions
(knowledge and design).

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Remember Last Lecture? (What Will You Accept as Valid Answers?)

21

Positivist ? Constructivist ?

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Remember Last Lecture? (What Will You Accept as Valid Answers?)

▸ Controlled experiments in
laboratory conditions are the only
source of trustworthy evidence.
▸ to prove that A causes B is to

manipulate A in a controlled setting,
and measure the effect on B.

22

Positivist Constructivist

▸ “Lab experiments are useless, they
ignore the messy complexity of
real software projects.”
▸ Field work instead!

▸ Judgments about “improvements”
to file navigation are subjective.

▸ Contextual factors such as
distractions have a major impact.

It is impossible to avoid some commitment to a particular stance, as
you cannot conduct research, and certainly cannot judge its results,
without some criteria for judging what constitutes valid knowledge.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Discussion: What kind of questions did Bogart and Raemaekers ask?

▸ How do developers make decisions about
whether and when to perform breaking
changes? How do they mitigate or delay
costs for other developers?

▸ How do developers react to and manage
change in their dependencies?

▸ How do policies, tooling, and community
values influence decision making?

24

How to Break an API: Cost Negotiation and

Community Values in Three Software Ecosystems

Christopher Bogart,1 Christian Kästner,1 James Herbsleb,1 Ferdian Thung2

1
Carnegie Mellon University, USA

2
Singapore Management University, Singapore

ABSTRACT
Change introduces conflict into software ecosystems: breaking
changes may ripple through the ecosystem and trigger rework
for users of a package, but often developers can invest addi-
tional e↵ort or accept opportunity costs to alleviate or delay
downstream costs. We performed a multiple case study of
three software ecosystems with di↵erent tooling and philoso-
phies toward change, Eclipse, R/CRAN, and Node.js/npm,
to understand how developers make decisions about change
and change-related costs and what practices, tooling, and
policies are used. We found that all three ecosystems dif-
fer substantially in their practices and expectations toward
change and that those di↵erences can be explained largely by
di↵erent community values in each ecosystem. Our results
illustrate that there is a large design space in how to build
an ecosystem, its policies and its supporting infrastructure;
and there is value in making community values and accepted
tradeo↵s explicit and transparent in order to resolve conflicts
and negotiate change-related costs.

CCS Concepts: Software and its engineering ! Collabora-
tion in software development;

Keywords: Software ecosystems; Dependency management;
semantic versioning; Collaboration; Qualitative research

1. INTRODUCTION
Central planning in software engineering is increasingly giv-
ing way to decentralized development in software ecosystems,
in which developers build on a rich set of third-party contri-
butions, from libraries to community documentation. Devel-
opers can reuse and build upon others’ contributions, often
aided by package management tools that support finding,
installing, and publishing third-party packages within the
ecosystem. Development in such a decentralized environment
can be challenging and can expose friction among loosely
organized parties.

Change introduces conflict into software ecosystems. Break-
ing changes in one package may ripple through the ecosystem

and may trigger rework in many dependent packages. Avoid-
ing changes, however, may result in stale software projects,
in dependencies with known defects, and in growing incom-
patibility with other tools and standards.
The burden of change can be borne by di↵erent partici-

pants: a package maintainer can decide how to make a change,
may invest additional e↵ort to make it easier to adopt the
change, or may decide to accept opportunity costs for not
making a change. Developers depending on other packages
may regularly monitor change in their dependencies and try
to influence their development or may rework their own pack-
ages. Core ecosystem developers might take on responsibility
for vetting or testing packages in some way. End users may
encounter defects if changes are not made or may encounter
installation di�culties if packages in the repository have
become incompatible.
How, when, and by whom changes are performed in an

ecosystem with interdependent packages is subject to (often
implicit) negotiation among diverse participants within the
ecosystem. Each participant has their own priorities, habits
and rhythms, often guided by community-specific values and
policies, or even enforced or encouraged by tools. Ecosystems
di↵er in, for example, to what degree they require consistency
among packages, how they handle versioning, and whether
there are central gatekeepers. Policies and tools are in part
designed explicitly, but in part emerge from ad-hoc decisions
or from values shared by community members. As a result,
community practices may assign burdens of work in ways
that create unanticipated conflicts or bottlenecks.

To understand current practices and how developers might
design or redesign their ecosystems, we have performed a
case study of three open source software ecosystems with
di↵erent philosophies toward change: Eclipse, R/CRAN, and
Node.js/npm. We studied how developers plan, manage, and
negotiate change within each ecosystem, how change-related
costs are allocated, and how developers are influenced by and
influence change-related expectations, policies, and tools in
the ecosystem. In each ecosystem, we studied public policies
and policy discussions and interviewed developers about their
expectations, communication, and decision-making regarding
changes. Our research questions were therefore:

• How do developers make decisions about whether and
when to perform breaking changes and how do they
mitigate or delay costs for other developers? (Section 5)

• How do developers react to and manage change in their
dependencies? (Section 6)

• How do policies, tooling, and community values influ-
ence decision making? (Sections 5.3, 6.3, and 7)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

FSE’16, November 13–18, 2016, Seattle, WA, USA
c� 2016 ACM. 978-1-4503-4218-6/16/11...$15.00

http://dx.doi.org/10.1145/2950290.2950325

109

Semantic Versioning versus Breaking Changes:
A Study of the Maven Repository

Steven Raemaekers
Software Improvement Group
Amsterdam, The Netherlands
Email: s.raemaekers@sig.eu

Arie van Deursen
Technical University Delft

Delft, The Netherlands
Email: arie.vandeursen@tudelft.nl

Joost Visser
Software Improvement Group
Amsterdam, The Netherlands

Email: j.visser@sig.eu

Abstract—For users of software libraries or public program-
ming interfaces (APIs), backward compatibility is a desirable
trait. Without compatibility, library users will face increased
risk and cost when upgrading their dependencies. In this
study, we investigate semantic versioning, a versioning scheme
which provides strict rules on major versus m inor and patch
releases. We analyze seven years of library release history in
Maven Central, and contrast version identifiers with actual
incompatibilities. We find that around one third of all releases
introduce at least one breaking change, and that this figure
is the same for minor and major releases, indicating that
version numbers do not provide developers with information in
stability of interfaces. Additionally, we find that the adherence
to semantic versioning principles has only marginally increased
over time. We also investigate the use of deprecation tags and
find out that methods get deleted without applying deprecated
tags, and methods with deprecated tags are never deleted. We
conclude the paper by arguing that the adherence to semantic
versioning principles should increase because it provides users
of an interface with a way to determine the amount of rework
that is expected when upgrading to a new version.

Keywords-Semantic versioning, Software libraries

I. INTRODUCTION

For users of software libraries or public programming
interfaces (APIs), backward compatibility is a desirable trait.
Without compatibility, library users will face increased risk
and cost when upgrading their dependencies. In spite of
these costs and risks, library upgrades may be desirable or
even necessary, for example if the newer version contains
required additional functionality or critical security fixes.
To conduct the upgrade, the library user will need to know
whether there are incompatibilities, and, if so, which ones.

Determining whether there are incompatibilities, however,
is hard to do for the library user (it is, in fact, undecidable in
general). Therefore, it is the library creator’s responsibility
to indicate the level of compatibility of a library update.
One way to inform library users about incompatibilities is
through version numbers. As an example, semantic ver-
sioning1 (semver) suggests a versioning scheme in which
three digit version numbers MAJOR.MINOR.PATCH have
the following semantics:

1http://semver.org

• MAJOR: This number should be incremented when
incompatible API changes are made;

• MINOR: This number should be incremented when
functionality is added in a backward-compatible man-
ner;

• PATCH: This number should be incremented when
backward-compatible bug fixes are made.

These principles were formulated in 2010 by (GitHub
founder) Tom Preston-Werner.2 As argued in the semantic
versioning specification, “these rules are based on but
not necessarily limited to pre-existing widespread common
practices in use in both closed and open-source software.”

But how common are these practices in reality? Are
such changes just harmless, or do they actually hurt by
causing rework? Do breaking changes mostly occur in major
releases, or do they occur in minor releases as well? Do
major and minor releases differ in terms of typical size?
Furthermore, for the breaking changes that do occur, to
what extent are they signalled through, e.g., deprecation
tags? Finally, does the presence of breaking changes affect
the time (delay) between library version release and actual
adoption of the new release in clients?

In this paper, we seek to answer questions like these. To
do so, we make use of seven years of versioning history as
present in the collection of Java libraries available through
Maven’s central repository.3 Our dataset comprises around
150,000 binary jar files, corresponding to around 22,000
different libraries for which we have 7 versions on average.
Furthermore, our dataset includes cross-usage of libraries
(libraries use other libraries in the dataset), permitting us to
study the impact of incompatibilities in concrete clients as
well.

As an approximation of the (undecidable) notion of back-
ward compatbility, we use binary compatibility as defined in
the Java language specification. This is an underestimation,
since binary incompatibilities are certainly breaking, but
there are likely to be different (semantic) incompatibilities

2Github actively promotes semver and encourages all 10,000,000
projects hosted by GitHub to adopt it.

3http://search.maven.org/

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-0-7695-5304-7/14 $31.00 © 2014 IEEE
DOI 10.1109/SCAM.2014.30

215

2014 14th IEEE International Working Conference on Source Code Analysis and Manipulation

978-1-4799-6148-1/14 $31.00 © 2014 IEEE
DOI 10.1109/SCAM.2014.30

215

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 04,2021 at 15:33:33 UTC from IEEE Xplore. Restrictions apply.

▸ How are semantic versioning principles applied
in practice in the Maven repository?

▸ Has the adherence to semantic versioning
principles increased over time?

▸ How are dependencies to newer versions
updated? What are factors causing systems not
to include the latest versions of dependencies?

▸ How are deprecation tags applied to methods
in the Maven repository?

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Activity: in Breakouts, Choose “Best” Method for Answering These Questions

▸ Why do engineers ignore security warnings in their code?

▸ Does test driven development improve code quality?

▸ Which code review tool reveals more bugs?

▸ Do the topics discussed in online technical forums deter the involvement of
female students? Has this changed since online learning?

▸ How often does this software fail and in what ways?

25

Activity by Peggy Storey

Next Week:
The Role of Theory

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Credits

▸ Graphics:
▸ Dave DiCello photography (cover)

▸ Content:
▸ Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods

for software engineering research. In Guide to advanced empirical software engineering (pp.
285-311). Springer, London.

27

