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Outline for Today
▸ The role of theory — leftovers from Tuesday 
▸ Literature reviews
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I. The Role of Theory 
(Leftovers)



Meet Stu Dent

‣ Topic: using AI to generate programming 
source code from natural language  

‣ 9 months into his PhD 
‣ Has built a tool  
‣ Needs an evaluation plan

Stu Dent idea by Steve Easterbrook 
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Stu’s Evaluation Plan
▸ Controlled experiment using an IDE plugin 
▸ Independent variable: Stu’s “NL2Code” vs. writing code “from scratch” 
▸ Dependent variables: correctness, speed, subjective assessment 
▸ Tasks: various Python 
▸ Subjects: CS grad students 
▸ Hypotheses: 
▸ H1: “Code written using NL2Code is more often correct than code written from scratch.” 
▸ H2: “Subjects complete tasks faster when using NL2Code than when writing code from scratch.” 
▸ H3: “Subjects prefer using the snippets from NL2Code over writing code from scratch.” 

▸ Results: 
▸ H1 & H2 & H3 rejected* 
▸ Subjects found NL2Code unintuitive
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* True story: https://arxiv.org/abs/2101.11149

https://arxiv.org/abs/2101.11149


Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Why Build a Tool?
▸ Build a Tool to Test a Theory  
▸ Tool is part of the experimental materials needed to conduct your study 

▸ Build a Tool to Develop a Theory  
▸ Theory emerges as you explore the tool 

▸ Build a Tool to Explain your Theory  
▸ Theory as a concrete instantiation of (some aspect of) the theory 
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Stu’s Theory
▸ Background assumptions 
▸ Tasks can be completed by piecing together code snippets involving popular libraries / APIs 
▸ Many such example code snippets are available in NL2Code’s trained data 
▸ …
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Stu’s Theory
Basic theory (brief summary) 
▸ Programmers decompose tasks into a sequence of (small) steps.  
▸ At every step, they know conceptually what must be done next, but  
▸ (a) do not know how to create a concrete implementation of their idea, or  
▸ (b) would rather not have to type it in.  

▸ NL2Code could help speed up task completion especially in the (b) scenario;  
▸ otherwise, with (a) users might not recognize which NL2Code search result to use, if 

multiple, or know how to integrate that snippet into their program.  

▸ Possible speedups would occur primarily because users risk getting 
distracted when they switch context going outside of their IDEs; 
▸ not because of the time it would take to write down source code (because programmers 

mostly copy paste code from Stack Overflow anyway; they rarely write code from scratch).  

▸ …
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Stu’s Theory
▸ Some possible derived hypotheses: 
▸ For tasks where programmers have extensive prior experience (i.e., they could have written 

solutions from scratch), using NL2Code should reduce task completion times. 

▸ The more steps (e.g., API calls) are involved in implementing a solution to a task, the more 
NL2Code should speed up task completion times. 

▸ …
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Take-Home Messages
▸ Articulate the theory(s) underlying your work 
▸ Be precise about your research questions 
▸ Be deliberate (and ideally explicit) about your philosophical stance 
▸ Use the theory to guide the study design
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Slide by Steve Easterbrook 

Test the theory, not the tool!
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Summary
▸ In any empirical study, theories become a “lens” through which the world is 

observed and interpreted, whether or not they are explicitly acknowledged. 
▸ Real-world phenomena too rich / complex to study without that much filtering.  

▸ Quantitative methods:  
▸ Theory to decide which variables to isolate and measure, and which to ignore or exclude.  

▸ Qualitative methods: 
▸ Theory to focus data analysis / interpretation. 
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Summary
▸ Without the theory, we have no way of making sense of the 

accumulation of empirical results.  
▸ An individual study can never offer conclusive results. 

▸ Theories support analytical generalization 
▸ Provide a deeper understanding of our empirical results 
▸ ...and hence how they apply more generally 
▸ Much more powerful than statistical generalization 
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All Methods Are Flawed 
▸ E.g. Laboratory Experiments 
▸ Cannot study large scale software development in the lab! 
▸ Too many variables to control them all!  

▸ E.g. Case Studies 
▸ How do we know what’s true in one project generalizes to others? 
▸ Researcher chose what questions to ask, hence biased the study  

▸ E.g. Surveys 
▸ Self-selection of respondents biases the study 
▸ Respondents tell you what they think they ought to do, not what they actually do  

▸ ...etc... 
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Strategies To Overcome Weaknesses
▸ Theory-building 
▸ Testing a hypothesis is pointless (single flawed study!)… 
▸ ...unless it builds evidence for a clearly stated theory  

▸ Empirical induction 
▸ Series of studies over time… 
▸ Each designed to probe more aspects of the theory 
▸ ...together build evidence for a clearly stated theory 

▸ Mixed-methods research 
▸ Use multiple methods to investigate the same research question  
▸ Each method compensates for the flaws of the others 
▸ ...together build evidence for a clearly stated theory 
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Slide by Steve Easterbrook 



II. Literature Review
▸ Lingard, L. (2015). Joining a conversation: the problem/gap/hook heuristic. Perspectives on 

Medical Education, 4(5), 252-253. 
▸ Lingard, L. (2018). Writing an effective literature review. Perspectives on Medical Education, 

7(2), 133-135. 
▸ Justin Zobel, Writing for Computer Science (3rd Edition). Springer, 2015 
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A Literature Review Helps You Choose a Research Topic

▸ Does it add to the body of knowledge? 
▸ Who else besides you would care about results?

16

Can it be studied? Should it be studied?vs
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A Literature Review Serves Multiple Purposes
▸ Report what is known about your topic.  
▸ Share with reader results from related studies 
▸ Benchmark for comparing results 

▸ Main purpose: identify what remains unknown. 
▸ Relate your study to literature, filling in gaps 
▸ Direction for your research questions and hypotheses 
▸ Framework for establishing the importance of your study
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Several Forms of Literature Review Are Possible
▸ Integrate what others have done and said 
▸ Criticize prior work 
▸ Build bridges between related topics 
▸ Identify the central issues in a field
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Side Effect: Lit Review Pushes You To Articulate Your Contributions
▸ Does your project: 
▸ Address a new topic? 
▸ Use a new data collection method? 
▸ Extend the discussion? 
▸ Refine / extend a theory? 
▸ Replicate a study in a new situation? 
▸ …
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Activity: Read and Discuss the Lit Reviews in One of the Following Papers
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ABSTRACT 
More and more web users keep up with newest information 
through information streams such as the popular micro-
blogging website Twitter. In this paper we studied content 
recommendation on Twitter to better direct user attention. 
In a modular approach, we explored three separate 
dimensions in designing such a recommender: content 
sources, topic interest models for users, and social voting. 
We implemented 12 recommendation engines in the design 
space we formulated, and deployed them to a recommender 
service on the web to gather feedback from real Twitter 
users. The best performing algorithm improved the 
percentage of interesting content to 72% from a baseline of 
33%. We conclude this work by discussing the implications 
of our recommender design and how our design can 
generalize to other information streams. 

Author Keywords 
Information stream, recommender system, topic modeling, 
social filtering. 

ACM Classification Keywords 
H.5.3: Group and Organization Interfaces. 

General Terms 
Algorithms, Experimentation 

INTRODUCTION 
Information streams have recently emerged as a popular 
means of information awareness. By information streams 
we are referring to the general set of Web 2.0 feeds such as 
status updates on Twitter and Facebook, and news and 
entertainment in Google Reader or other RSS readers. 
Although they have notable differences, the above 
examples share two key commonalities: (1) they deliver to 
each user a stream of text entries over time that are 
personalized to the user’s subscriptions, and (2) they allow 
users to explicitly interact with each other. As information 

distribution platforms, Twitter, Facebook and Google 
Reader have all enjoyed great popularity and are drawing 
ever more new users into them. For instance, according to 
compete.com’s traffic statistics, the total number of people 
visiting Twitter has been rising from about 6 million per 
month in January 2009 to over 23 million per month as of 
July 2009 (http://siteanalytics.compete.com/twitter.com/). 

With an abundance of information comes the scarcity of 
attention [20]. Two user needs arise from attention scarcity: 
filtering and discovery.  On the one hand, a user’s stream 
will often receive hundreds of items each day, much beyond 
what users have time to process. Users would like to filter 
the stream down to those items that are indeed of interest. 
On the other hand, many users also want to discover useful 
content outside their own streams, such as interesting URLs 
on Twitter posted by friends of friends, or relevant blogs in 
Google Reader that are subscribed by other friends. This 
discovery task is formidable, given the vast amount of 
information that are disseminated daily through information 
stream services. 

One approach is to proactively recommend interesting 
content to users so as to better direct their attention. Google 
Reader has implemented a discovery feature that 
recommends interesting RSS feeds, and a number of third-
party websites provide filtering or recommendation services 
for Twitter users. So far there has been little discussion 
regarding the effectiveness of such solutions, and little is 
known regarding the design space of information stream 
recommenders. 

As a domain for recommendation, information streams have 
three interesting properties that distinguish them from other 
well-studied domains: 

(1) Recency of content:  Content in the stream is often 
considered interesting only within a short time of first being 
published. As a result, the recommender may always be in a 
“cold start” situation [19], i.e. there is not enough data to 
generate a good recommendation.  

(2) Explicit interaction among users: Unlike other domains 
where users interact with the system as isolated individuals, 
with information stream users explicitly interact by 
subscribing to others’ streams or by sharing items.  

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA. 
Copyright 2010 ACM  978-1-60558-929-9/10/04....$10.00. 
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Two Case Studies of Open Source Software
Development: Apache and Mozilla
AUDRIS MOCKUS
Avaya Labs Research
ROY T FIELDING
Day Software
and
JAMES D HERBSLEB
Carnegie Mellon University

According to its proponents, open source style software development has the capacity to compete
successfully, and perhaps in many cases displace, traditional commercial development methods. In
order to begin investigating such claims, we examine data from two major open source projects, the
Apache web server and the Mozilla browser. By using email archives of source code change history
and problem reports we quantify aspects of developer participation, core team size, code ownership,
productivity, defect density, and problem resolution intervals for these OSS projects. We develop
several hypotheses by comparing the Apache project with several commercial projects. We then
test and refine several of these hypotheses, based on an analysis of Mozilla data. We conclude with
thoughts about the prospects for high-performance commercial/open source process hybrids.

Categories and Subject Descriptors: D.2.9 [Software Engineering]— Life cycle, Productivity, Pro-
gramming teams, Software process models, Software Quality assurance, Time estimation; D.2.8
[Software Engineering]— Process metrics, Product metrics; K.6.3 [Software Management]—
Software development, Software maintenance, Software process

General Terms: Management, Experimentation, Measurement, Human Factors

Additional Key Words and Phrases: Open source software, defect density, repair interval, code
ownership, Apache, Mozilla

This work was done while A. Mockus and J. D. Herbsleb were members of software Production
Research Department at Lucent Technologies’ Bell Laboratories.
This article is a significant extension to the authors’ paper, “A case study of open source software
development: the Apache server,” that appeared in the Proceedings of the 22nd International Con-
ference on Software Engineering, Limerick, Ireland, June 2000 (ICSE 2000), 263-272.
Authors’ addresses: A. Mockus, Avaya Labs Research, 233 Mt. Airy Road, Basking Ridge, NJ 07920;
email: audris@mockus.com; R.T. Fielding, Day Software, 2 Corporate Plaza, Suite 150, Newport
Beach, CA 92660-7929; email: fielding@apache.org; J.D. Herbsleb, Carnegie Mellon University,
School of Computer Science, Pittsburgh, PA 15213; email: jherbsleb@acm.org.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2002 ACM 1049-331X/02/0700-0309 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002, Pages 309–346.

Read up to “METHODOLOGY 
AND DATA SOURCES” on page 
302

Discussion points: 
▸ How much prior work was 

there? 
▸ How is the literature organized? 
▸ What kind of questions is the 

paper addressing? 
▸ What is the knowledge gap 

being addressed?
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Activity: Read Beginning of “Two Case Studies..” By Mockus Et Al
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1. INTRODUCTION
The open source software “movement” has received enormous attention in the
last several years. It is often characterized as a fundamentally new way to
develop software [Dibona et al. 1999; Raymond 1999] that poses a serious
challenge [Vixie 1999] to the commercial software businesses that dominate
most software markets today. The challenge is not the sort posed by a new
competitor that operates according to the same rules but threatens to do it
faster, better, cheaper. The OSS challenge is often described as much more fun-
damental, and goes to the basic motivations, economics, market structure, and
philosophy of the institutions that develop, market, and use software.

The basic tenets of OSS development are clear enough, although the details
can certainly be difficult to pin down precisely (see Perens [1999]). OSS, most
people would agree, has as its underpinning certain legal and pragmatic ar-
rangements that ensure that the source code for an OSS development will be
generally available. Open source developments typically have a central person
or body that selects some subset of the developed code for the “official” releases
and makes it widely available for distribution.

These basic arrangements to ensure freely available source code have led to
a development process that is radically different, according to OSS proponents,
from the usual industrial style of development. The main differences most often
mentioned are the following.! OSS systems are built by potentially large numbers (i.e., hundreds or even

thousands) of volunteers. It is worth noting, however, that currently a number
of OSS projects are supported by companies and some participants are not
volunteers.! Work is not assigned; people undertake the work they choose to undertake.! There is no explicit system-level design, or even detailed design [Vixie 1999].! There is no project plan, schedule, or list of deliverables.

Taken together, these differences suggest an extreme case of geographically
distributed development, where developers work in arbitrary locations, rarely
or never meet face to face, and coordinate their activity almost exclusively by
means of email and bulletin boards. What is perhaps most surprising about
the process is that it lacks many of the traditional mechanisms used to coordi-
nate software development, such as plans, system-level design, schedules, and
defined processes. These “coordination mechanisms” are generally considered
to be even more important for geographically distributed development than for
colocated development [Herbsleb and Grinter 1999], yet here is an extreme case
of distributed development that appears to eschew them all.

Despite the very substantial weakening of traditional ways of coordinating
work, the results from OSS development are often claimed to be equivalent,
or even superior to software developed more traditionally. It is claimed, for
example, that defects are found and fixed very quickly because there are “many
eyeballs” looking for the problems (Eric Raymond [1999] calls this “Linus’s
Law”). Code is written with more care and creativity, because developers are
working only on things for which they have a real passion [Raymond 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 3, July 2002.

Open Source Software Development • 311

It can no longer be doubted that OSS development has produced software of
high quality and functionality. The Linux operating system has recently enjoyed
major commercial success, and is regarded by many as a serious competitor to
commercial operating systems such as Windows [Krochmal 1999]. Much of the
software for the infrastructure of the Internet, including the well-known bind,
Apache, and sendmail programs, were also developed in this fashion.

The Apache server (one of the OSS software projects under consideration in
this case study) is, according to the Netcraft survey, the most widely deployed
Web server at the time of this writing. It accounts for over half of the 7 million or
so Web sites queried in the Netcraft data collection. In fact, the Apache server
has grown in “market share” each year since it first appeared in the survey in
1996. By any standard, Apache is very successful.

Although this existence proof means that OSS processes can, beyond a doubt,
produce high-quality and widely deployed software, the exact means by which
this has happened, and the prospects for repeating OSS successes, are fre-
quently debated (see, e.g., Bollinger et al. [1999] and McConnell [1999]). Propo-
nents claim that OSS software stacks up well against commercially developed
software both in quality and in the level of support that users receive, although
we are not aware of any convincing empirical studies that bear on such claims.
If OSS really does pose a major challenge to the economics and the methods of
commercial development, it is vital to understand it and to evaluate it.

This article presents two case studies of the development and maintenance of
major OSS projects: the Apache server and Mozilla. We address key questions
about their development processes, and about the software that is the result of
those processes. We first studied the Apache project, and based on our results,
framed a number of hypotheses that we conjectured would be true generally of
open source developments. In our second study, which we began after the anal-
yses and hypothesis formation were completed, we examined comparable data
from the Mozilla project. The data provide support for several of our original
hypotheses.

In the remainder of this section, we present our specific research questions.
In Section 2, we describe our research methodology for both the Apache and
Mozilla projects. This is followed in Section 3 by the results of Study 1, the
Apache project, and hypotheses derived from those results. Section 4 presents
our results from Study 2, the Mozilla project, and a discussion of those results
in light of our previous hypotheses. We conclude the article in Section 5.

1.1 Research Questions
Our questions focus on two key sets of properties of OSS development. It is
remarkable that large numbers of people manage to work together success-
fully to create high-quality, widely used products. Our first set of questions (Q1
to Q4) is aimed at understanding basic parameters of the process by which
Apache and Mozilla came to exist.

Q1: What were the processes used to develop Apache and Mozilla?
In answer to this question, we construct brief qualitative descriptions of

Apache and Mozilla development processes.
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Q2: How many people wrote code for new functionality? How many people
reported problems? How many people repaired defects?

We want to see how large the development communities were, and identify
how many people actually occupied each of these traditional development and
support roles.

Q3: Were these functions carried out by distinct groups of people, that is, did
people primarily assume a single role? Did large numbers of people participate
somewhat equally in these activities, or did a small number of people do most of
the work?

Within each development community, what division of labor resulted from
the OSS “people choose the work they do” policy? We want to construct a profile
of participation in the ongoing work.

Q4: Where did the code contributors work in the code? Was strict code owner-
ship enforced on a file or module level?

One worry of the “chaotic” OSS style of development is that people will make
uncoordinated changes, particularly to the same file or module, that interfere
with one another. How does the development community avoid this?

Our second set of questions (Q5 to Q6) concerns the outcomes of these pro-
cesses. We examine the software from a customer’s point of view, with respect to
the defect density of the released code, and the time to repair defects, especially
those likely to significantly affect many customers.

Q5: What is the defect density of Apache and Mozilla code?
We compute defects per thousand lines of code, and defects per delta in order

to compare different operationalizations of the defect density measure.
Q6: How long did it take to resolve problems? Were high priority problems

resolved faster than low priority problems? Has resolution interval decreased
over time?

We measured this interval because it is very important from a customer
perspective to have problems resolved quickly.

2. METHODOLOGY AND DATA SOURCES
In order to produce an accurate description of the open source development
processes, we wrote a draft of description of each process, then had it reviewed
by members of the core OSS development teams. For the Apache project, one
of the authors (RTF), who has been a member of the core development team
from the beginning of the Apache project, wrote the draft description. We then
circulated it among all other core members and incorporated the comments
of one member who provided feedback. For Mozilla, we wrote a draft based on
many published accounts of the Mozilla process.1 We sent this draft to the Chief
Lizard Wrangler who checked the draft for accuracy and provided comments.
The descriptions in the next section are the final product of this process. The
commercial development process is well known to two of the authors (AM, JDH)
from years of experience in the organization, in addition to scores of interviews
1Please see Ang and Eich [2000], Baker [2000], Eich [2001], Hecker [1999], Howard [2000], Mozilla
Project, Oeschger and Boswell [2000], Paquin and Tabb [1998], Yeh [1999], Williams [2000], and
Zawinski [1999].
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Mockus Et Al, ”Two Case Studies”

▸ Open source is often characterized as a fundamentally new way to 
develop software  

▸ The open source development process is radically different from the 
usual industrial style of development: 
▸ extreme case of geographically distributed development, where developers 

work in arbitrary locations, rarely or never meet face to face, and coordinate 
their activity almost exclusively by means of email and bulletin boards 
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The Gap + Hook

▸ What is perhaps most surprising about the process is that it lacks many of the 
traditional mechanisms used to coordinate software development, such as plans, 
system-level design, schedules, and defined processes.  

▸ These “coordination mechanisms” are generally considered to be even more 
important for geographically distributed development than for colocated 
development [Herbsleb and Grinter 1999], yet here is an extreme case of distributed 
development that appears to eschew them all.  

▸ Despite the very substantial weakening of traditional ways of coordinating work, the 
results from OSS development are often claimed to be equivalent, or even superior to 
software developed more traditionally.

23



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

The Gap + Hook (2)

▸ Although this existence proof (Apache, Linux) means that OSS processes can, 
beyond a doubt, produce high-quality and widely deployed software, the 
exact means by which this has happened, and the prospects for repeating 
OSS successes, are frequently debated  

▸ If OSS really does pose a major challenge to the economics and the methods 
of commercial development, it is vital to understand it and to evaluate it. 
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Activity: Read Beginning of “Short and Tweet” by Chen Et Al
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ABSTRACT 
More and more web users keep up with newest information 
through information streams such as the popular micro-
blogging website Twitter. In this paper we studied content 
recommendation on Twitter to better direct user attention. 
In a modular approach, we explored three separate 
dimensions in designing such a recommender: content 
sources, topic interest models for users, and social voting. 
We implemented 12 recommendation engines in the design 
space we formulated, and deployed them to a recommender 
service on the web to gather feedback from real Twitter 
users. The best performing algorithm improved the 
percentage of interesting content to 72% from a baseline of 
33%. We conclude this work by discussing the implications 
of our recommender design and how our design can 
generalize to other information streams. 

Author Keywords 
Information stream, recommender system, topic modeling, 
social filtering. 

ACM Classification Keywords 
H.5.3: Group and Organization Interfaces. 

General Terms 
Algorithms, Experimentation 

INTRODUCTION 
Information streams have recently emerged as a popular 
means of information awareness. By information streams 
we are referring to the general set of Web 2.0 feeds such as 
status updates on Twitter and Facebook, and news and 
entertainment in Google Reader or other RSS readers. 
Although they have notable differences, the above 
examples share two key commonalities: (1) they deliver to 
each user a stream of text entries over time that are 
personalized to the user’s subscriptions, and (2) they allow 
users to explicitly interact with each other. As information 

distribution platforms, Twitter, Facebook and Google 
Reader have all enjoyed great popularity and are drawing 
ever more new users into them. For instance, according to 
compete.com’s traffic statistics, the total number of people 
visiting Twitter has been rising from about 6 million per 
month in January 2009 to over 23 million per month as of 
July 2009 (http://siteanalytics.compete.com/twitter.com/). 

With an abundance of information comes the scarcity of 
attention [20]. Two user needs arise from attention scarcity: 
filtering and discovery.  On the one hand, a user’s stream 
will often receive hundreds of items each day, much beyond 
what users have time to process. Users would like to filter 
the stream down to those items that are indeed of interest. 
On the other hand, many users also want to discover useful 
content outside their own streams, such as interesting URLs 
on Twitter posted by friends of friends, or relevant blogs in 
Google Reader that are subscribed by other friends. This 
discovery task is formidable, given the vast amount of 
information that are disseminated daily through information 
stream services. 

One approach is to proactively recommend interesting 
content to users so as to better direct their attention. Google 
Reader has implemented a discovery feature that 
recommends interesting RSS feeds, and a number of third-
party websites provide filtering or recommendation services 
for Twitter users. So far there has been little discussion 
regarding the effectiveness of such solutions, and little is 
known regarding the design space of information stream 
recommenders. 

As a domain for recommendation, information streams have 
three interesting properties that distinguish them from other 
well-studied domains: 

(1) Recency of content:  Content in the stream is often 
considered interesting only within a short time of first being 
published. As a result, the recommender may always be in a 
“cold start” situation [19], i.e. there is not enough data to 
generate a good recommendation.  

(2) Explicit interaction among users: Unlike other domains 
where users interact with the system as isolated individuals, 
with information stream users explicitly interact by 
subscribing to others’ streams or by sharing items.  
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(3) User-generated content: Users are not passive 
consumers of content in information streams. People are 
often content producers as well as consumers. Micro-
blogging software such as Twitter and Facebook status 
updates are prominent examples. 

In this paper we describe our design and empirical studies 
of a recommender system built on top of Twitter, called 
zerozero88, which recommends URLs that a particular 
Twitter user might find interesting. The recommender we 
developed is publicly available at www.zerozero88.com.  

We chose Twitter as our target platform for several reasons, 
most importantly because it shares all the common features 
of information streams described earlier. As a successful 
platform, Twitter also provides a chance to recruit real users 
and alleviate their real attention scarcity problems. Finally, 
Twitter provides a set of public APIs, enabling us to 
implement and deploy our recommender. We chose to 
focus on recommending URLs, because the URL represents 
a common ‘unit’ of information on the web, and previous 
research has identified sharing URLs and reporting news as 
common uses of Twitter [9]. 

We wish to investigate: 

(a) Whether recommender systems can help users find 
interesting content on Twitter?  

(b) What elements lead to an effective Twitter-based 
recommendation? How can this understanding inform 
recommender design for other information streams? 

To achieve our research goals, we first conducted pilot 
interviews to elicit early qualitative feedback and refine our 
system design. After implementing the system, we 
conducted a controlled field study on our web service to 
gather quantitative results. 

The rest of the paper is structured as follows.  First, we 
discuss how existing research relates to our work. We then 
provide an overview of information production and 
information seeking practices on Twitter. We describe the 
design space of our recommender, and then detail our 
studies and the results. We conclude with discussions of our 
findings that may generalize to other information streams. 

RELATED WORK 
Recommenders as a solution to attention scarcity have been 
studied for years. Perhaps the most well-known approach is 
collaborative filtering (CF), which recommends items (such 
as news stories) using similarities of preferences among 
users [10]. This approach does not rely on the content of 
items, but instead requires users to rate items to indicate 
their preferences, and infers preference similarity from the 
overlap of rated items across users.  

CF recommenders commonly suffer from little user rating 
overlap early on, known as the “cold-start” problem; a 
common solution is to use other information like the textual 
content of the items to be recommended [4, 19]. 

There is a wealth of research on recommenders that utilize 
the content of items. Such recommenders are often used in 
domains where extensive textual content is available for 
items, such as websites [14] and books [13]. For example, 
to recommend websites, Pazzani et al. first created bag-of-
word profiles for individuals from their activities and then 
chose websites most relevant to the profile of the individual 
as recommendations [14]. Because activities of an 
individual are often insufficient for creating useful profiles, 
Balabanovic et al. proposed to create profiles not from an 
individual’s activity but from a group of related individuals 
[4]. This work can be viewed as a hybrid of collaborative 
filtering and content-based approaches [12]. 

Recommendations can be generated from explicit social 
information and social processes as well. For example, Hill 
et al. described a social filtering recommender on Usenet 
newsgroups [8]. For each newsgroup, they recommended 
the most frequently mentioned URLs to that group. 
Andersen et al. proposed the concept of a trust-based 
recommender [2]. From a theoretical perspective they 
discussed ways to employ users’ opinions toward other 
users to compute recommendations. Several other papers 
investigated the possibility of using social network 
structures for recommendation [5, 7]. For example, Chen et 
al. recommended friends-of-friends as potential friends to 
users of a social networking site, and showed that this 
scheme is accepted more often than recommending people 
sharing common keywords [5]. 

Prior research in developing scalable recommenders [6, 15, 
18] is also relevant here because the Twitter ecosystem is so 
huge that many otherwise useful algorithms become 
intractable. For example, Sarwar et al. applied clustering 
algorithms to partition user population, built neighborhoods 
for users from the partition, and considered only those 
neighborhoods when computing recommendations [18]. 
Another relevant work integrated distributed computation 
techniques for recommendation in Google News [6]. These 
techniques recursively chop a full problem into sub-
problems, so that in the end they can utilize all information 
in the system despite the large scale of the data. 

Outside of academic research, several start-up companies 
provide information stream filtering or recommendation 
services, such as my6sense.com, feedafever.com, and 
MicroPlaza.com. Both my6sense and feedafever filter RSS 
feeds, including Twitter streams. MicroPlaza recommends 
personalized news for Twitter users. As start-ups, none of 
them disclose their approaches or benchmarks. 

Because Twitter has both textual and social information 
available, key parts of the past work described above may be 
applicable for a Twitter recommender. However, most of 
them have not yet been implemented and evaluated on 
Twitter or information streams in general. As a result, it is 
unclear whether these techniques function well given the 
differences between their original domains and Twitter, or if 
some techniques need to be changed to fit the needs of 
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Twitter users. Our work not only depict the design space for 
a Twitter recommender, but also better inform designers of 
recommenders for other information streams. 

INFORMATION PRODUCTION & SEEKING ON TWITTER 
Twitter describes itself as a micro-blogging service. Users of 
the site can post short messages, each up to 140 characters, 
commonly known as tweets. As information producers, 
people post ‘tweets’ for a variety of purposes, including daily 
chatter, conversation, sharing information/URLs and 
reporting news [9]. Other information streams may have 
different dominating purposes for posting. For example, on 
Facebook most of status updates are daily chatter and 
conversation, while a majority of blog posts in Google 
Reader may be for information sharing. 

As an information seeker, each Twitter user sees a tweet 
stream when visiting Twitter. A new account only includes 
tweets posted by one’s self; one can include another user’s 
tweets by following that user. Throughout this paper, 
whenever user A follows user B, we refer to A as B’s 
follower, and B as A’s followee. 

While some might refer to their followees as their “friends”, 
the following relationship on Twitter is not reciprocal, and 
does not necessarily imply friendship or even acquaintance 
between two users. For example, over two million users 
follow Barrack Obama, few of whom he follows back. 
Obviously, those people follow President Obama because 
they are interested in what he says, not because they are 
personal friends with him. This mechanism of following is 
different from friendship in other sites such as Facebook, 
where connections between people are always reciprocal and 
require confirmation from both sides. 

A typical Twitter user picks a list of followees by hand and 
monitors her personal stream over time. People can also 
discover information outside their stream in a number of 
ways, including typing the username of an arbitrary user to 
see her stream, checking the most popular topics across the 
whole Twitter site, searching for tweets over the whole 
Twitter site by keywords, or using one of many third party 
services that support exploration on Twitter. 

DESIGNING RECOMMENDERS FOR TWITTER 
We form our design space into three dimensions: (1) how to 
select candidate URLs, (2) how to use content information, 
and (3) how to use social information. We illustrate the full 
design space in Table 1, where each cell is a possible design 
choice we can make in one of the three dimensions.  

We discuss each dimension in the following subsections. 
Then, we will elaborate on possible system designs and 
articulate design questions that we answer through 
empirical studies. The conceptual model of the system that 
we built is shown in Figure 1. 

We did not consider collaborative filtering in our design, as 
this would require each URL to have feedback from several 
users to compute reliable recommendations. Moreover, the 
real-time value of URLs on Twitter requires recommenders 
to consider new URLs as soon as possible.  Under those 
two constraints, in order to obtain enough feedback for 
URLs before they become too old to be valuable, the 
recommender needs a large volume of real-time usage data, 
as demonstrated in the Google News recommender [6]. 
However, since we do not have access to large amounts of 
usage data, this is not a viable option for us. As a result, in 
formulating our design space, we focused on using content 
of the tweets and information from social processes. 

Selecting the Candidate Set 
In building our Twitter based URL recommender, we must 
first select a limited candidate set of URLs for 
recommendations due to the high volume of tweets on 
Twitter. According to TweeSpeed.com, as of September 
2009, the number of tweets sent per hour on Twitter ranges 
from 400,000 to 1,400,000. Scanning those tweets for 
URLs in real time is a technical challenge. Given limited 
access to tweets and processing capabilities, our first design 
question is how to select the most promising candidate set 
of URLs to consider for recommendations. 

Our problem of selecting a candidate set of URLs bears 
similarities to prior work on scalable recommenders [15, 

Twitter

Popular 
URLs

URLs from 
Users’ Local 

Neighborhoods

Users’ 
Tweets

Users’ Followees’ 
Tweets

Topic Relevance 
Models

Social Voting 
within Users’ 

Local 
Neighborhoods

Ranking URLs 
Using Topic 

Relevance and 
Social Voting

Recommendations

 
Figure 1. Conceptual Model of the Whole Recommender 

Design Dimension Possible Design Choices 

CandidateSet: Selecting Candidate Set FoF (followee-of-followees) Popular 

Ranking-Topic: Ranking Using Topic Relevance Self-Topic score Followee-Topic score None 

Ranking-Social: Ranking Using Social Voting Vote score None 
Table 1. The Design Space of the Recommender, Spanning 2x3x2=12 Possible Algorithm Designs 
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Chen Et Al, “Short and Tweet”
Introduction 
▸ Information streams are increasingly popular. 
▸ With an abundance of information comes the scarcity of attention. 
▸ Need to filter the stream down.  
▸ One approach is to recommend interesting content to users to better direct 

their attention. 
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Chen Et Al, “Short and Tweet”
▸ Recommenders as a solution to attention scarcity have been studied for years.  
▸ Perhaps the most well-known approach is collaborative filtering (CF) - infers 

preference similarity from the overlap of rated items across users  
▸ CF recommenders commonly suffer from little user rating overlap early on 

(“cold-start”); a common solution is to use other information  
▸ There is a wealth of research on recommenders that utilize the textual content 

of items.  
▸ Recommendations can be generated from explicit social information and 

social processes as well. 
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The Gap + Hook
▸ Because Twitter has both textual and social information available, key parts of 

the past work described above may be applicable for a Twitter recommender.  
▸ However, most of them have not yet been implemented and evaluated on 

Twitter or information streams in general.  
▸ As a result, it is unclear whether these techniques function well given the 

differences between their original domains and Twitter, or if some techniques 
need to be changed to fit the needs of Twitter users.  

▸ Our work not only depict the design space for a Twitter recommender, but also 
better inform designers of recommenders for other information streams. 
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Summary: Three Components to a Literature Review
(1) Identify a problem in the world that people are talking about; 

(2) Establish a gap in the current knowledge or thinking about the 
problem; and 

(3) Articulate a hook that convinces readers that this gap is of 
consequence. 

29



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Homework (Due Thursday Next Week) : Write a Mini Critique Essay Blog Post 

▸ Consider a top venue in your research area and browse papers recently 
published there. 

▸ Find a paper with an empirical component that illustrates “best practices” 
discussed in class so far: 
▸ Well-structured lit review, with clear problem / gap / hook 
▸ Precise research questions 
▸ (Bonus) Articulated theory 

▸ Write a blog post about that paper. Include: 
▸ Description of problem / gap / hook 
▸ Research questions 
▸ Overview of study design / methods 
▸ Your critique of all of the above
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Citation Dos and don’ts (1)
▸ Don’t add citations just to pad the bibliography! 
▸ Prefer: 
▸ Original paper over secondary source 
▸ Well-written material over bad 
▸ Peer-reviewed, top tier venue paper over unpublished / arXiv 
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Citation Dos and don’ts (2)
▸ Describe results from other papers fairly and accurately  
▸ Neither belittle papers, nor overstate their significance 

33

Robinson’s theory suggests that a cycle of handshaking can be eliminated, but he 
did not perform experiments to confirm his results [22].  

Robinson’s theory suggests that a cycle of handshaking can be eliminated [22], but 
as yet there is no experimental confirmation. 
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Citation Dos and don’ts (3)
▸ References that are discussed should not be anonymous. 
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Other work [16] has used an approach in which...  

Marsden [16] has used an approach in which... 
Other work (Marsden 1991) has used an approach in which... 
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Citation Dos and don’ts (4)
▸ Quoted material should be an exact transcription of the original text. 
▸ Permissible changes:
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They describe the methodology as “a hideous mess [ ...] that somehow manages to 
work in the cases considered [but] shouldn’t”. 
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