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WSDM (Conference on Web Search and Data Mining) Experiment
▸ Setup 
▸ Four committee members reviewed each paper 
▸ Two single blind, two double blind  

▸ Results  
▸ “Reviewers in the single-blind condition [...] preferentially bid for papers from top 

universities and companies.”  
▸ “Single-blind reviewers are significantly more likely than their double-blind counterparts to 

recommend for acceptance papers from famous authors [odds multiplier 1.64], top 
universities [1.58], and top companies [2.10].”
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Tomkins, A., Zhang, M., & Heavlin, W. D. (2017). Reviewer bias in single-versus double-blind 
peer review. Proceedings of the National Academy of Sciences, 114(48), 12708-12713.



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

NeurIPS (Conference on Neural Information Processing Systems) Experiment 

▸ Setup 
▸ Organizers split the program committee down the middle  
▸ Most submitted papers were assigned to a single side 
▸ 10% of submissions (166) were reviewed by both halves of the committee  

▸ Results  
▸ “most papers [57%] at NeurIPS would be rejected if one reran the conference review process 

(with a 95% confidence interval of 40-75%)” 
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http://blog.mrtz.org/2014/12/15/the-nips-experiment.html
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Teaching Formal Methods Experiment
▸ Two classes of students at Miami University of Ohio that studied object-

oriented (OO) design in a one semester course: 
▸ Control group (random sample): OO design class 
▸ Treatment group (volunteers): OO design class + formal methods 
▸ No statistical difference between the abilities of the two groups on standardized ACT pre-tests 

▸ As project, both classes were assigned the development of an elevator system 
▸ Students had to hand in:  
▸ functioning executable + source code  
▸ (+ formal specification written using first-order logic)
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Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: An empirical tale of 
software development. IEEE Transactions on Software Engineering, 28(3), 308-320.
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Teaching Formal Methods Experiment
▸ Standard set of test cases: 
▸ 45.5% of control teams passed all tests 
▸ 100% of treatment teams 

▸ Conclusions:  
▸ “formal methods students had increased complex-problem solving skills” 
▸ “the use of formal methods during software development produces ‘better’ programs”
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Sobel, A. E. K., & Clarkson, M. R. (2002). Formal methods application: An empirical tale of 
software development. IEEE Transactions on Software Engineering, 28(3), 308-320.
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Teaching Formal Methods Experiment
▸ “Unfortunately, the paper contains several subtle problems. The reader 

unfamiliar with the basic principles of experimental psychology may 
easily miss them and interpret the results incorrectly. Not only do we 
wish to point out these problems, but we also aim to illustrate what to 
look for when drawing conclusions from controlled experiments.”
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Berry, D. M., & Tichy, W. F. (2003). Comments on “Formal methods application: an empirical tale 
of software development". IEEE Transactions on Software Engineering, 29(6), 567-571.
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Teaching Formal Methods Experiment
▸ Confounding variables: 
▸ differences in motivation (treatment group volunteers more motivated) 
▸ differences in exposure (treatment group more instruction) 
▸ differences in learning style (treatment group better learners) 
▸ differences in skills (outside of ACT) 

▸ Novelty effects 
▸ …
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Berry, D. M., & Tichy, W. F. (2003). Comments on “Formal methods application: an empirical tale 
of software development". IEEE Transactions on Software Engineering, 29(6), 567-571.



Causal relationships
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Cause
▸ inus condition – “insufficient but nonredundant 

part of an unnecessary but sufficient condition” 

▸ Example: match to start a forest fire 
▸ Fires can start even without matches  

→ Match is not a necessary condition 

▸ Matches don’t always start forest fires (e.g., not 
on long enough, rainy weather)  
→ Match is not a sufficient condition
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Cause
▸ inus condition – “insufficient but nonredundant 

part of an unnecessary but sufficient condition” 
▸ Match is part of a bigger constellation of 

conditions without which a fire would not result 
▸ Insufficient: needs oxygen, dry leaves, etc 
▸ Nonredundant: needs to add something unique 

besides oxygen, dry leaves, etc
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Effect
▸ Counterfactual: what would have happened to 

these subjects had the cause not been present?  
▸ What did happen when people received a treatment, vs 

▸ What would have happened to those same people if 
they simultaneously had not received the treatment 
(“counterfactual”, i.e., contrary to fact) 

▸ Effect is distance between the two 

▸ Can’t observe, must infer / approximate.
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Experimental design:  
‣ Creating a high-quality but necessarily imperfect source 

of counterfactual inference  
‣ Understanding how this source differs from the treatment 

condition
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Ingredients for Establishing a Causal Relationship?

15
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Ingredients for Establishing a Causal Relationship
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The cause preceded the effect

The cause was related to the effect

We can find no plausible alternative 
explanation for the effect other than the cause
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Ingredients for Establishing a Causal Relationship
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Cause

Alternative explanations

Effect



Note how this mirror what happens in experiments. 

No other scientific method regularly matches the 
characteristics of causal relationships so well.



Aside: Mediators & Moderators
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Mediators and Moderators
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Independent 
variable X

Dependent 
variable Y
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Mediators and Moderators
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Independent 
variable X

Dependent 
variable Y

Mediating 
variable M

Links in the explanatory chain: Mediator
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Mediators and Moderators
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Socioeconomic 
status

Child reading 
ability

Parental 
education level
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Mediators and Moderators
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Independent 
variable X

Dependent 
variable Y

Moderating 
variable Z

Causal relationship varies in strength 
(or direction) as Z varies: Moderator
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Mediators and Moderators
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Work 
experience Salary

Gender



Aside: Correlation is not enough!
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Correlation Does Not Prove Causation
▸ Which variable came first? 
▸ Are there alternative explanations for the presumed effect? 

▸ Example: income ~ education or education ~ income? 
▸ Confounding variable: intelligence, family socioeconomic status (causes both high 

education and high income)
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http://www.tylervigen.com/spurious-correlations
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Data sources: Centers for Disease Control & Prevention and Internet Movie Database

Data sources: U.S. Department of Agriculture and Centers for Disease Control & Prevention
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http://www.tylervigen.com/spurious-correlations
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Data sources: U.S. Census Bureau and National Science Foundation

Data sources: Federal Aviation Administration and National Science Foundation
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Total revenue generated by arcadesTotal revenue generated by arcades
 correlates with 

Computer science doctorates awarded in the USComputer science doctorates awarded in the US
Correlation: 98.51% (r=0.985065)
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Worldwide non-commercial space launchesWorldwide non-commercial space launches
 correlates with 

Sociology doctorates awarded (US)Sociology doctorates awarded (US)
Correlation: 78.92% (r=0.78915)
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Experiments: Summary Pros and Cons



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Advantages and Disadvantages of Experiments
▸ Disadvantages of experiments: 
▸ Conditions may be unrealistic 
▸ Tell nothing about how and why effects occurred 
▸ Cannot deal with cases when we first observe 

effect and need to look for causes 

30
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Advantages and Disadvantages of Experiments
▸ Disadvantages of experiments: 
▸ Conditions may be unrealistic 
▸ Tell nothing about how and why effects occurred 
▸ Cannot deal with cases when we first observe 

effect and need to look for causes 

▸ Unique advantage: 
▸ Causal description: describe consequences 

attributable to deliberately varying a treatment 
▸ (But not causal explanation / mechanisms) 
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… to be continued
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