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Outline for Today
▸ More on experimental design
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The vocabulary of experiments
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The Vocabulary of Experiments

4

A study in which an 
intervention is deliberately 
introduced to observe its 

effects

Experiment
An experiment in which units are 
assigned to receive the treatment 

or an alternative condition by a 
random process

Randomized Experiment

An experiment in which 
units are not assigned to 

conditions randomly

Quasi-Experiment

The cause usually can’t be manipulated. 
A study that contrasts a naturally 

occurring event such as an earthquake 
with a comparison condition

Natural Experiment
Aka “observational study.” 

A study that simply observes the size 
and direction of a relationship among 

variables

Correlational Study
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https://www.washingtonpost.com/outlook/2020/09/10/
coronavirus-research-experiment-behavior

https://www.wired.com/
story/a-huge-covid-19-
natural-experiment-is-
underway-in-classrooms/
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Randomized Experiment (Sometimes “True Experiment”)
▸ Various treatments being contrasted 

(including no treatment at all) are 
assigned to experimental units by chance. 

▸ Resulting 2+ groups of units are 
probabilistically similar to each other on 
the average. 

▸ Outcome differences are likely due to 
treatment. 

6
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Are You Really Doing an “Experiment”?
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46 CHAPTER 3 Experimental design

(biases) and guidelines for effectively avoiding or controlling those biases. The chap-
ter ends with a discussion of typical procedures for running HCI experiments.

3.1  WHAT NEEDS TO BE CONSIDERED WHEN DESIGNING 
EXPERIMENTS?
We need to consider several issues when designing an experiment that investigates 
HCI-related questions. Some of these issues are universal for all scientific experi-
ments, such as research hypotheses, the measurement of the dependent variables, and 
the control of multiple conditions. Other issues are unique to experiments that involve 
human subjects, such as the learning effect, participants' knowledge background, and 
the size of the potential participant pool. Detailed discussions of measurement and 
generation of research hypotheses are provided in Chapter 2. A complete review on 
conducting research involving human subjects is provided in Chapter 15.

Most successful experiments start with a clearly defined research hypothesis with 
a reasonable scope (Oehlert, 2000). The research hypothesis is generated based on 
results of earlier exploratory studies and provides critical information needed to de-
sign an experiment. It specifies the independent and dependent variables of the ex-
periment. The number and values of independent variables directly determine how 
many conditions the experiment has. For example, consider designing an experiment 
to investigate the following hypothesis:

There is no difference between the target selection speed when using a mouse, a 
joystick, or a trackball to select icons of different sizes (small, medium, and large).

There are two independent variables in this hypothesis: the type of pointing device 
and the size of icon. Three different pointing devices will be examined: a mouse, a 
joystick, and a trackball, suggesting three conditions under this independent variable. 
Three different target sizes will be examined: small, medium, and large, suggesting 

Design study

True
experiment 

Quasi
experiment 

Non
experiment 

Multiple groups or
conditions? 

Yes

Randomization
used? 

Yes

No

No

FIGURE 3.1

Defining true experiments, quasi-experiments, and nonexperiments.



Some designs used with random assignment
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R              X              O 
R                               O

Basic X vs C
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R              X              O 
R                               O

Basic X vs C

Two conditions

Random assignment of 
participants to conditions

Treatment / Intervention
Posttest assessment
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R              X              O 
R                               O

Basic X vs C

Two conditions

Random assignment of 
participants to conditions

Treatment / Intervention
Posttest assessment

▸ Limitation: 
Can’t separate active 
ingredients in treatment 
from the experience of 
being treated
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

▸ Innovative treatment vs 
gold standard 

▸ Limitation: 
▸ If no effect, can’t distinguish if 

both treatments were equally 
effective or equally ineffective 

▸ Innovative treatment vs 
gold standard vs control
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

▸ Common limitation: Lack of pretest 
▸ Especially if attrition 
▸ But not always undesirable 
▸ E.g., unwanted sensitization effect from 

pretest, physically impossible to collect, 
constant (all alive) 
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

R              O              X              O 
R              O                               O

Pretest-posttest

R              O              XA            O 
R              O              XB            O

Alternative Xs with pretest

▸ Some extra statistical analysis advantages, 
besides robustness to attrition.
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

R              O              X              O 
R              O                               O

Pretest-posttest

R              O              XA            O 
R              O              XB            O

Alternative Xs with pretest

R              XA1B1            O 
R              XA1B2            O 
R              XA2B1            O 
R              XA2B2            O

Factorial

▸ Three major advantages:  
▸ They often require fewer units. 
▸ They allow testing combinations of 

treatments more easily.  
▸ They allow testing interactions. 
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Example of Interaction Effects
▸ Novice users can select targets faster 

with a touchscreen than with a mouse.  
▸ Experienced users can select targets 

faster with a mouse than with a 
touchscreen.  

▸ The target selection speeds for both 
the mouse and the touchscreen 
increase as the user gains more 
experience with the device.  

▸ However, the increase in speed is 
much larger for the mouse than for 
the touchscreen. 
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593.5  Reliability of experimental results

device when the interaction is normally brief and the opportunities for training are 
limited, such as an ATM interface. In contrast, a mouse might be more appropriate 
for long-term, frequent tasks, such as interacting with a computer desktop.

3.5  RELIABILITY OF EXPERIMENTAL RESULTS
All experimental research strives for high reliability. Reliable experiments can be 
replicated by other research teams in other locations and yield results that are con-
sistent, dependable, and stable. One big challenge in HCI studies is that in contrast 
to the “hard sciences,” such as physics, chemistry, and biology, measurements of hu-
man behavior and social interaction are normally subject to higher fluctuations and, 
therefore, are less replicable. The fluctuations in experimental results are referred to 
as errors.

3.5.1  RANDOM ERRORS
We may observe a participant typing several text documents during five sessions 
and obtain an actual typing speed of 50 words per minute. It is very unlikely that we 
would get the same typing speed for all five sessions. Instead, we may end up with 
data like this:

Session 1: 46 words per minute
Session 2: 52 words per minute
Session 3: 47 words per minute
Session 4: 51 words per minute
Session 5: 53 words per minute

35
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FIGURE 3.6

Interaction effects.
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

R              O              X              O 
R              O                               O

Pretest-posttest

R              O              XA            O 
R              O              XB            O

Alternative Xs with pretest

R              XA1B1            O 
R              XA1B2            O 
R              XA2B1            O 
R              XA2B2            O

Factorial

R              O … O            X              O … O 
R              O … O                             O … O

Longitudinal
▸ Examine how effects 

change over time
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R              X              O 
R                               O

Basic X vs C

R              XA            O 
R              XB            O

Basic XA vs XB

R              XA            O 
R              XB            O 
R                              O

Basic XA vs XB vs C

R              O              X              O 
R              O                               O

Pretest-posttest

R              O              XA            O 
R              O              XB            O

Alternative Xs with pretest

R              XA1B1            O 
R              XA1B2            O 
R              XA2B1            O 
R              XA2B2            O

Factorial

R              O            XA             O           XB              O  
R              O            XB             O           XA              O

Crossover
▸ Used to counterbalance 

and assess order effects 
with multiple treatments



Another way to think about designs
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48 CHAPTER 3 Experimental design

reasonable estimation of the timeline of the experiment and the budget. The basic 
structure of an experiment can be determined by answering two questions:

• How many independent variables do we want to investigate in the experiment?
• How many different values does each independent variable have?

The answer to the first question determines whether we need a basic design or a 
factorial design. If there is one independent variable, we need only a basic one-level 
design. If there are two or more independent variables, factorial design is the way to go. 
The answer to the second question determines the number of conditions needed in the 
experiment (see Figure 3.2). In a basic design, the number of conditions in the experi-
ment is an important factor when we consider whether to adopt a between-group or 
within-group design. In a factorial design, we have a third option: the split-plot design. 
Again, the number of conditions is a crucial factor when weighing up the three options.

In the following sections, we first consider the basic design scenarios involving 
one independent variable and focus on the characteristics of between-group design 
and within-group design. After that, we consider more complicated designs involving 
multiple independent variables, to which understanding split-plot design is the key.

3.3  INVESTIGATING A SINGLE INDEPENDENT VARIABLE
When we study a single independent variable, the design of the experiment is simpler 
than cases in which multiple variables are involved. The following hypotheses all 
lead to experiments that investigate a single independent variable:

Design study

Basic design

Between group Between groupWithin group Within group Split-plot

Determine number
of conditions

Determine number
of conditions

Factorial design

Number of values in each
independent variable?

Yes

Number of independent variables >1?

No

FIGURE 3.2

Determining the experiment structure.
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Between-Group Design
▸ Aka “between-subject design.” 
▸ Each participant is only 

exposed to one experimental 
condition.  

▸ E.g., if the task is to type a 
500-word doc, each 
participant types one doc 
using one of the keyboards. 

21

493.3  Investigating a single independent variable

• H1: There is no difference in typing speed when using a QWERTY keyboard, a 
DVORAK keyboard,1 or an alphabetically ordered keyboard.

• H2: There is no difference in the time required to locate an item in an online 
store between novice users and experienced users.

• H3: There is no difference in the perceived trust toward an online agent among 
customers who are from the United States, Russia, China, and Nigeria.

The number of conditions in each experiment is determined by the possible values 
of the independent variable. The experiment conducted to investigate hypothesis H1 
would involve three conditions: the QWERTY keyboard, the DVORAK keyboard, 
and the alphabetically ordered keyboard. The experiment conducted to investigate 
hypothesis H2 would involve two conditions: novice users and experienced users. 
And the experiment conducted to investigate hypothesis H3 would involve four con-
ditions: customers from the United States, Russia, China, and Nigeria.

Once the conditions are set, we need to determine the number of conditions 
to which we would allow each participant to be exposed by selecting either a 
 between-group design or a within-group design. This is a critical step in experi-
mental design and the decision made has a direct impact on the quality of the data 
collected as well as the statistical methods that should be used to analyze the data.

3.3.1  BETWEEN-GROUP DESIGN AND WITHIN-GROUP DESIGN
Between-group design is also called “between-subject design.” In a between-group de-
sign, each participant is only exposed to one experimental condition. The number of 
participant groups directly corresponds to the number of experimental conditions. Let 
us use the experiment on types of keyboard as an example. As shown in Figure 3.3, three 

1 Dvorak keyboard is an ergonomic alternative to the commonly used “QWERTY keyboard.” The 
design of the Dvorak keyboard emphasizes typist comfort, high productivity, and ease of learning.

QWERTY
keyboard 

DVORAK
keyboard 

Alphabetic
keyboard 

FIGURE 3.3

Between-group design.
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Within-Group Design
▸ Aka “within-subject design.” 
▸ Each participant is exposed to 

multiple experimental 
conditions.  

▸ E.g., each participant types 
three docs, using each of the 
three keyboards for one doc. 

22

50 CHAPTER 3 Experimental design

groups of participants take part in the experiment and each group only uses one specific 
type of keyboard. If the task is to type a document of 500 words, then each participant 
types one document using one of the keyboards.

In contrast, a within-group design (also called “within-subject design”) requires 
each participant to be exposed to multiple experimental conditions. Only one group of 
participants is needed for the entire experiment. If we use the keyboard experiment as an 
example, as shown in Figure 3.4, one group of participants uses all three types of key-
board during the experiment. If the task is to type a document of 500 words, then each 
participant types three documents, using each of the three keyboards for one document.

Please note that different statistical approaches are needed to analyze data col-
lected from the two different design methods. The details of statistical analysis are 
discussed in Chapter 4.

3.3.1.1  Advantages and disadvantages of between-group design
From the statistical perspective, between-group design is a cleaner design. Since the 
participant is only exposed to one condition, the users do not learn from different task 
conditions. Therefore, it allows us to avoid the learning effect. In addition, since the 
participants only need to complete tasks under one condition, the time it takes each par-
ticipant to complete the experiment is much shorter than in a within-group design. As a 
result, confounding factors such as fatigue and frustration can be effectively controlled.

On the other hand, between-group design also has notable disadvantages. In a 
between-group experiment, we are comparing the performance of one group of par-
ticipants against the performance of another group of participants. The results are 
subject to substantial impacts from individual differences: the difference between 
the multiple values that we expect to observe can be buried in a high level of “noise” 
caused by individual differences. Therefore, it is harder to detect significant differ-
ences and Type II errors are more likely to occur.

QWERTY
keyboard 

DVORAK
keyboard 

Alphabetic
keyboard 

FIGURE 3.4

Within-group design.
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Comparison of Between-Group and Within-Group Designs 

23

52 CHAPTER 3 Experimental design

end of the experiment. For instance, in the ATM experiment, if the touch-screen in-
terface is always tested after the button interface, we might draw a conclusion that the 
touch-screen interface is not as effective as the button interface when the observed 
difference is actually due to the participants' fatigue. We might fail to identify that 
the touch-screen interface is better than the button interface because the impact of 
fatigue offsets the gain of the touch-screen interface. Similarly, the potential problem 
of fatigue can also be controlled through the adoption of the Latin Square Design.

3.3.1.3  Comparison of between-group and within-group designs
The pros and cons of the between- and within-group designs are summarized in 
Table 3.1. You can see from the table that the advantages and limitations of the two 
design methods are exactly opposite to each other.

3.3.2  CHOOSING THE APPROPRIATE DESIGN APPROACH
It is quite common for experimenters to argue back and forth when deciding which 
of the two design approaches to adopt. Many times the decision is quite hard to make 
since the advantages and disadvantages of the between-group design and within-group 
design are exactly opposite to each other. It should be emphasized that each experiment 
is unique and the decision should be made on a case-by-case basis with full consider-
ation of the specific context of the experiment. In some cases, a hybrid design may be 
adopted that involves both between-group factors and within-group factors. The hy-
brid approach is discussed in detail in Section 3.4.2. This section discusses the general 
guidelines that help us choose the appropriate approach for a specific user study.

3.3.2.1  Between-group design
Generally speaking, between-group design should be adopted when the experiment 
investigates: simple tasks with limited individual differences; tasks that would be 
greatly influenced by the learning effect; or problems that cannot be investigated 
through a within-group design.

Table 3.1 Advantages and Disadvantages of Between-Group Design and 
Within-Group Design

 Type of Experiment Design

 Between-Group Design Within-Group Design

Advantages

Cleaner
Avoids learning effect
Better control of confounding 
factors, such as fatigue

Smaller sample size
Effective isolation of individual 
differences
More powerful tests

Limitations

Larger sample size
Large impact of individual 
differences
Harder to get statistically 
significant results

Hard to control learning effect
Large impact of fatigue



The generalization of causal connections
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Four Types of Validity

25

The validity of inferences about the correlation 
(covariation) between treatment and outcome.

Statistical Conclusion Validity
The validity of inferences about whether 

observed covariation between A (the presumed 
treatment) and B (the presumed outcome) 

reflects a causal relationship from A to B as those 
variables were manipulated or measured.

Internal Validity

The validity of inferences about the higher order 
constructs that represent sampling particulars.

Construct Validity

The validity of inferences about whether the 
cause-effect relationship holds over variation in 

persons, settings, treatment variables, and 
measurement variables.

External Validity
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Construct Validity
▸ Can we generalize results to the theoretical constructs that the units, 

treatments, observations, and settings are supposed to represent? 
▸ E.g., whether  
▸ patient education (the target cause)  
▸ promotes physical recovery (the target effect)  
▸ among surgical patients (the target population of units)  
▸ in hospitals (the target universe of settings) 

▸ Do the actual manipulations and measures used in the experiment really 
tap into the specific cause and effect constructs specified by the theory?

26

See 
book
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External Validity
▸ Does the causal relationship hold over variations in persons, settings, 

treatments, and outcomes? 
▸ Narrow to broad? 
▸ Broad to narrow? 
▸ Across units at the same level of aggregation? 

27

See 
book
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A Few Threats to Internal Validity
▸ Ambiguous Temporal Precedence:  
▸ Which variable occurred first? 

▸ Selection:  
▸ Systematic differences over conditions in 

respondent characteristics.  

▸ History:  
▸ Events occurring concurrently with 

treatment.  

▸ Maturation:  
▸ Naturally occurring changes over time 

confused with a treatment effect. 

28

▸ Regression:  
▸ When units are selected for their extreme 

scores, they will often have less extreme 
scores on other variables. 
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Regression to the Mean
▸ Phenomenon involving 

successive measurements on a 
given variable. 

▸ Extreme observations tend to be 
followed by more central ones. 
▸ E.g., the children of extremely tall 

men tend not to be as tall as their 
father [Galton-1886].

29

with genetic tendencies; for example, the children of extremely tall men tend not to
be as tall as their father (see Figure 2-5).

Figure 2-5. Galton’s study that identi!ed the phenomenon of regression to the mean

Regression to the mean, meaning to “go back,” is distinct from the
statistical modeling method of linear regression, in which a linear
relationship is estimated between predictor variables and an out‐
come variable.

Key Ideas
• Specifying a hypothesis and then collecting data following randomization and

random sampling principles ensures against bias.
• All other forms of data analysis run the risk of bias resulting from the data collec‐

tion/analysis process (repeated running of models in data mining, data snooping
in research, and after-the-fact selection of interesting events).

56 | Chapter 2: Data and Sampling Distributions
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A Few Threats to Internal Validity
▸ Ambiguous Temporal Precedence:  
▸ Which variable occurred first? 

▸ Selection:  
▸ Systematic differences over conditions in 

respondent characteristics.  

▸ History:  
▸ Events occurring concurrently with 

treatment.  

▸ Maturation:  
▸ Naturally occurring changes over time 

confused with a treatment effect. 
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▸ Regression:  
▸ When units are selected for their extreme 

scores, they will often have less extreme 
scores on other variables. 

▸ Attrition:  
▸ Loss of respondents to treatment or to 

measurement.  

▸ Testing:  
▸ Exposure to a test can affect scores on 

subsequent exposures to that test.  

▸ Instrumentation:  
▸ The nature of a measure may change over 

time or conditions. 
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Statistical Conclusion Validity
▸ Two related statistical inferences that affect the covariation component of 

causal inferences: 
▸ whether the presumed cause and effect covary. 
▸ how strongly they covary.  

▸ Type I error: 
▸ incorrectly conclude that cause and effect covary when they do not. 

▸ Type II error: 
▸ incorrectly conclude that they do not covary when they do.

31
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A Few Threats to Statistical Conclusion Validity

32

▸ Low Statistical Power:  
▸ → Type II errors 

▸ Violated assumptions of statistical tests:  
▸ Either over- or underestimate the size and significance of an effect.  

▸ Fishing:  
▸ Repeated tests can inflate statistical significance.  

▸ Unreliability of measures 
▸ Restriction of range on variable: 
▸ Typically weakens the relationship between it and another variable. 
▸ E.g., don’t dichotomize.

See 
book
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Hypothesis Tests 
▸ Aka “significance tests” 
▸ Purpose:  
▸ Could random chance be responsible for an observed effect? 

▸ Null hypothesis (H0): 
▸ The hypothesis that chance is to blame.  
▸ e.g., “There is no difference in the mean time to complete a task using NL2Code 

vs. writing code from scratch.” 

▸ Alternative hypothesis (Ha): 
▸ Counterpoint to the null (what you hope to prove).  
▸ e.g., “It takes less time on average to complete a task using NL2Code rather than 

by writing code from scratch.”

33
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Aside: Why Do We Need a Hypothesis? Why Not Just Look at the Outcome 
of the Experiment and Go With Whichever Treatment Does Better?

▸ Experiment: invent a series of 50 coin flips. 
▸ Write down a series of random 1s and 0s: [1, 0, 1, 0, 1, 0, …]

34
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Aside: Why Do We Need a Hypothesis? Why Not Just Look at the Outcome 
of the Experiment and Go With Whichever Treatment Does Better?

▸ Experiment: invent a series of 50 coin flips. 
▸ Write down a series of random 1s and 0s: [1, 0, 1, 0, 1, 0, …] 

▸ Humans have a tendency to underestimate randomness.  
▸ Computer-generated “real” coin flip results vs made-up human results:  
▸ the real ones will have longer runs of 1s or 0s. 
▸ median length of subsequences of 1s in a row:  
▸ 5 for the computer-generated sequences 
▸ only 4 for the human-generated set 

▸ When most of us are inventing random coin flips and we have gotten 
three or four 1s in a row, we tell ourselves that, for the series to look 
random, we had better switch to 0.

35
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Aside: How Do You Interpret the P-Value?
▸ H0: “There is no difference in the mean time to complete a task using 

NL2Code vs. writing code from scratch.” 
▸ Ha: “It takes less time on average to complete a task using NL2Code 

rather than writing code from scratch.” 

▸ You run some statistical test (e.g., t-test) and obtain a P-value. 

36
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Aside: P-Value Controversy
▸ What we would like the p-value to convey:  
▸ (We hope for a low value, so we can conclude that we’ve proved something.) 

▸ What the p-value actually represents: 

37

The probability that the result is due to chance: P(H0|D)

The probability that, given a chance model, results as 
extreme as the observed results could occur: P(D|H0)

Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI.  
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1105-1114).
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The P Value Is the Probability of the Observed Outcome (X) Plus all 
“More Extreme” Outcomes

38

Graphical depiction of the definition 
of a (one-sided) P value. The curve 
represents the probability of every 
observed outcome under the null 
hypothesis.



Carnegie Mellon University

The P Value Is the Probability of the Observed Outcome (X) Plus all 
“More Extreme” Outcomes

▸ Not the probability that the null hypothesis is true! 
▸ Example: Is a coin fair or not? 
▸ H0: The coin is fair: P(Heads) = P(Tails) = 1/2 
▸ Ha: The coin is biased: P(Heads) ≠ 1/2

39
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Consider Four Consecutive Coin Flips:
▸ First toss:

40

? 

Probability
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Consider Four Consecutive Coin Flips:
▸ First toss: 

▸ Second toss:

41

0.5 

?

Probability
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Consider Four Consecutive Coin Flips:
▸ First toss: 

▸ Second toss: 

▸ Third toss: 

▸ Fourth toss:

42

0.5 

0.25 

0.125 

0.0625

Probability
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Is Coin Fair?
▸ Two-sided P = 0.125.  

▸ This does not mean that the probability of the coin being fair is only 12.5%!

43

0.0625 0.0625
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Is Coin Fair?
▸ Two-sided P = 0.125.  

▸ This does not mean that the probability of the coin being fair is only 12.5%!

44

0.0625 0.0625

P(H0|D) = 
P(D|H0) P(H0)

P(D)



Common false belief that the probability of a conclusion 
being in error can be calculated from the data in a single 
experiment without reference to external evidence or the 
plausibility of the underlying mechanism.
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Twelve P-Value Misconceptions
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II “error rates,” “power,” and other related ideas. Even though
we use P values in the context of this testing system today, it
is not a comfortable marriage, and many of the misconcep-
tions we will review flow from that unnatural union. In-
depth explanation of the incoherence of this system, and the
confusion that flows from its use can be found in the litera-
ture.16,18-20 Here we will focus on misconceptions about how
the P value should be interpreted.

The definition of the P value is as follows—in words: The
probability of the observed result, plus more extreme results, if the
null hypothesis were true; in algebraic notation: Prob(X ! x |
Ho), where “X” is a random variable corresponding to some
way of summarizing data (such as a mean or proportion), and
“x” is the observed value of that summary in the current data.
This is shown graphically in Figure 1.

We have now mathematically defined this thing we call a P
value, but the scientific question is, what does it mean? This is
not the same as asking what people do when they observe
P ".05. That is a custom, best described sociologically. Ac-
tions should be motivated or justified by some conception of
foundational meaning, which is what we will explore here.

Because the P value is not part of any formal calculus of
inference, its meaning is elusive. Below are listed the most
common misinterpretations of the P value, with a brief dis-
cussion of why they are incorrect. Some of the misconcep-
tions listed are equivalent, although not often recognized as
such. We will then look at the P value through a Bayesian lens
to get a better understanding of what it means from an infer-
ential standpoint.

For simplicity, we will assume that the P value arises from
a two-group randomized experiment, in which the effect of
an intervention is measured as a difference in some average
characteristic, like a cure rate. We will not explore the many
other reasons a study or statistical analysis can be misleading,
from the presence of hidden bias to the use of improper
models; we will focus exclusively on the P value itself, under
ideal circumstances. The null hypothesis will be defined as
the hypothesis that there is no effect of the intervention (Ta-
ble 1).

Misconception #1: If P!.05, the null hypothesis has only a
5% chance of being true. This is, without a doubt, the most
pervasive and pernicious of the many misconceptions about
the P value. It perpetuates the false idea that the data alone
can tell us how likely we are to be right or wrong in our
conclusions. The simplest way to see that this is false is to
note that the P value is calculated under the assumption that
the null hypothesis is true. It therefore cannot simultaneously
be a probability that the null hypothesis is false. Let us sup-
pose we flip a penny four times and observe four heads,
two-sided P ! .125. This does not mean that the probability
of the coin being fair is only 12.5%. The only way we can
calculate that probability is by Bayes’ theorem, to be dis-
cussed later and in other chapters in this issue of Seminars in
Hematology.21-24

Misconception #2: A nonsignificant difference (eg, P ".05)
means there is no difference between groups. A nonsignificant
difference merely means that a null effect is statistically con-
sistent with the observed results, together with the range of
effects included in the confidence interval. It does not make
the null effect the most likely. The effect best supported by
the data from a given experiment is always the observed
effect, regardless of its significance.

Misconception #3: A statistically significant finding is clini-

Figure 1 Graphical depiction of the definition of a (one-sided) P
value. The curve represents the probability of every observed out-
come under the null hypothesis. The P value is the probability of the
observed outcome (x) plus all “more extreme” outcomes, repre-
sented by the shaded “tail area.”

Table 1 Twelve P-Value Misconceptions

1 If P ! .05, the null hypothesis has only a 5% chance of being true.
2 A nonsignificant difference (eg, P >.05) means there is no difference between groups.
3 A statistically significant finding is clinically important.
4 Studies with P values on opposite sides of .05 are conflicting.
5 Studies with the same P value provide the same evidence against the null hypothesis.
6 P ! .05 means that we have observed data that would occur only 5% of the time under the null hypothesis.
7 P ! .05 and P <.05 mean the same thing.
8 P values are properly written as inequalities (eg, “P <.02” when P ! .015)
9 P ! .05 means that if you reject the null hypothesis, the probability of a type I error is only 5%.

10 With a P ! .05 threshold for significance, the chance of a type I error will be 5%.
11 You should use a one-sided P value when you don’t care about a result in one direction, or a difference in

that direction is impossible.
12 A scientific conclusion or treatment policy should be based on whether or not the P value is significant.

136 S. Goodman

Goodman, S. (2008, July). A dirty dozen: twelve p-value misconceptions. 
In Seminars in hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.
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Type I and Type II Errors
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Study conclusion

No difference Using NL2Code 
is faster

Reality
No difference Type I error

Using NL2Code 
is faster Type II error
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Type I and Type II Errors
▸ In assessing statistical significance, two types of error are possible:  
▸ Type I: you mistakenly conclude an effect is real, when it is really just due to chance 
▸ False positives  

▸ Type II: you mistakenly conclude that an effect is due to chance, when it actually is real  
▸ False negatives 

▸ The basic function of hypothesis tests is to protect against being fooled by 
random chance; thus they are typically structured to minimize Type I errors.
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Controlling the Risks of Type I and Type II Errors
▸ The probability of making a Type I error is called alpha. 
▸ (or “significance level”, “P-value”) 

▸ The probability of making a Type II error is called beta.  
▸ The statistical power of a test, defined as 1 − β, refers to the probability of 

successfully rejecting a null hypothesis when it is false and should be rejected. 
▸ To reduce errors: 
▸ Type I: P < 0.05 
▸ Type II: large sample size

49
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Aside: Torture the Data Long Enough, and It Will Confess. 
▸ Imagine you have 20 predictor variables and one outcome variable, all 

randomly generated.  
▸ You do 20 significance tests at the alpha = 0.05 level (one per variable). 
▸ What’s the probability of Type I errors (false positives)?

50
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Aside: Torture the Data Long Enough, and It Will Confess. 
▸ Imagine you have 20 predictor variables and one outcome variable, all 

randomly generated.  
▸ You do 20 significance tests at the alpha = 0.05 level (one per variable). 
▸ What’s the probability of Type I errors (false positives)?
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😱 

▸ The probability that one will correctly test nonsignificant is 0.95 
▸ The probability that all 20 will correctly test nonsignificant is:  
▸ 0.95 × 0.95 × 0.95..., or 0.9520 = 0.36 

▸ The probability that at least one predictor will (falsely) test significant:  
▸ 1 – (probability that all will be nonsignificant) = 0.64



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Credits
▸ Graphics: Dave DiCello photography (cover) 
▸ Chapters from Shadish, W. R., Cook, T. D., & 

Campbell, D. T. (2002). Experimental and quasi-
experimental designs for generalized causal 
inference. Wadsworth Publishing 
▸ Ch1: Experiments and generalized causal inference 
▸ Ch2: Statistical conclusion validity and internal validity 
▸ Ch3: Construct validity and external validity 
▸ Ch8: Randomized experiments 

▸ Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical 
Statistics for Data Scientists: 50+ Essential 
Concepts Using R and Python. O'Reilly Media. 

▸ Freedman, D., Pisani, R., Purves, R., & Adhikari, A. 
(2007). Statistics. 

▸ Goodman, S. (2008). A dirty dozen: Twelve p-
value misconceptions. In Seminars in Hematology 
(Vol. 45, No. 3, pp. 135-140). WB Saunders.

52

▸ Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research 
methods in human-computer interaction. Morgan 
Kaufmann. 

▸ Ch 3: Experimental design 
▸ Ch 4: Statistical analysis 

▸ MacKenzie, I. S. (2012). Human-computer interaction: 
An empirical research perspective. 

▸ Ch 6: Hypothesis testing 

▸ Robertson, J., & Kaptein, M. (Eds.). (2016). Modern 
statistical methods for HCI. Cham: Springer. 

▸ Ch 5: Effect sizes and power analysis 
▸ Ch 13: Fair statistical communication 
▸ Ch 14: Improving statistical practice 

▸ Kaptein, M., & Robertson, J. (2012). Rethinking statistical 
analysis methods for CHI. In Proceedings of the SIGCHI 
Conference on Human Factors in Computing Systems 
(pp. 1105-1114).



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Read
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interpretation)
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