17-803 Empirical Methods Bogdan Vasilescu, Institute for Software Research Designing Experiments (Part III

Thursday, March 18, 2021

Photo credit: <u>Dave DiCello</u>

Outline for Today

More on experimental design

Human-Computer Interaction An Empirical Research Perspective M< I. Scott MacKenzie

Ch 6 (Hypothesis testing)

Ch 1 (Experiments and causality) Ch 2 & 3 (Validity) Ch 8 (Randomized experiments)

Claes Wohlin - Per Runeson Martin Höst - Magnus C. Ohlsson Björn Regnell - Anders Wesslén

Experimentation in Software Engineering

D Springer

Ch 10 (Analysis and interpretation)

Ch 5 (Effect sizes and power analysis) Ch 13 (Fair statistical communication) Ch 14 (Improving statistical practice)

Ch 6 (Statistical methods and measurement)

Ch 3 (Experimental design) Ch 4 (Statistical analysis)

The vocabulary of experiments

The Vocabulary of Experiments

Experiment

A study in which an intervention is deliberately introduced to observe its effects

Randomized Experiment

An experiment in which units are assigned to receive the treatment or an alternative condition by a random process

Natural Experiment

The cause usually can't be manipulated. A study that contrasts a naturally occurring event such as an earthquake with a comparison condition

Quasi-Experiment

An experiment in which units are not assigned to conditions randomly

Correlational Study

Aka "observational study." A study that simply observes the size and direction of a relationship among variables

The great experiment

The pandemic is tragic. It's also an incredible chance to study human behavior.

https://www.washingtonpost.com/outlook/2020/09/10/ coronavirus-research-experiment-behavior

https://www.wired.com/ story/a-huge-covid-19natural-experiment-isunderway-in-classrooms/

Randomized Experiment (Sometimes "True Experiment")

- Various treatments being contrasted (including no treatment at all) are assigned to experimental units by chance.
- Resulting 2+ groups of units are probabilistically similar to each other on the average.
- Outcome differences are likely due to treatment.

Are You Really Doing an "Experiment"?

Some designs used with random assignment

R	X	Ο
R		\bigcirc
		Ŭ

Random assignment of participants to conditions

Two conditions

Random assignment of participants to conditions

Two conditions

Limitation:

Can't separate active ingredients in treatment from the experience of being treated

11

Basic	X _A vs
R	X _A
R	X _B

- Innovative treatment vs gold standard
- Limitation:
 - If no effect, can't distinguish if both treatments were equally effective or equally ineffective

Innovative treatment vs gold standard vs control

R	X	Ο
R		Ο

Basic	X _A vs
R	X _A
R	X _B

- Common limitation: Lack of pretest
 Especially if attrition
 But not always undesirable
 E.g., unwanted sensitization effect from
 - E.g., unwanted sensitization effect from pretest, physically impossible to collect, constant (all alive)

Basic X vs C		Bas	Basic	sic X _A vs)	
R R	X	0 0		R R	X _A X _B

Some extra statistical analysis advantages, besides robustness to attrition.

Alternative Xs with pretest

0	XA	Ο
0	X _B	Ο

R	X	Ο
R		Ο

Basic	X _A vs
R	XA
R	X _B

- - They often require fewer units.
 - They allow testing combinations of treatments more easily.
 - They allow testing interactions.

ive	Xs with	pretest
0	X _A V-	0
<u> </u>	v B	

Factorial X_{A1B1} R R X_{A1B2} R X_{A2B1}

 X_{A2B2}

R

Three major advantages:

Example of Interaction Effects

- Novice users can select targets faster with a touchscreen than with a mouse.
- Experienced users can select targets faster with a mouse than with a touchscreen.
- The target selection speeds for both the mouse and the touchscreen increase as the user gains more experience with the device.
- However, the increase in speed is much larger for the mouse than for the touchscreen.

R	X	Ο
R		O

Basic	X _A vs
R	XA
R	X _B

R	X	Ο
R		Ο

Basi	c X _A vs
R	XA
R	XB

Used to counterbalance and assess order effects with multiple treatments

ive Xs with pretest				Factorial					
0 0		X _A X _B	0 0			R R R		X _{A1B} X _{A1B} X _{A2B}	1 2 1
						R		X _{A2B}	2
	Cros	sover							
	R R	0 0	X X	Á B	0 0		X _B X _A		0 0

Another way to think about designs

[17-803] Empirical Methods, Spring 2021

Between-Group Design

- > Aka "between-subject design."
- Each participant is only exposed to one experimental condition.
- E.g., if the task is to type a 500-word doc, each participant types one doc using one of the keyboards.

21

Within-Group Design

- Aka "within-subject design."
- Each participant is exposed to multiple experimental conditions.
- E.g., each participant types three docs, using each of the three keyboards for one doc.

Comparison of Between-Group and Within-Group Designs

Table 3.1 Advantages and Disadvantages of Between-Group Design and

 Within-Group Design

	Type of Experiment Design				
	Between-Group Design	Within-Group Design			
Advantages	Cleaner Avoids learning effect Better control of confounding factors, such as fatigue	Smaller sample size Effective isolation of individual differences More powerful tests			
Limitations	Larger sample size Large impact of individual differences Harder to get statistically significant results	Hard to control learning effect Large impact of fatigue			

The generalization of causal connections

Four Types of Validity

Statistical Conclusion Validity

The validity of inferences about the correlation (covariation) between treatment and outcome.

<u>Construct Validity</u>

The validity of inferences about the higher order constructs that represent sampling particulars.

Internal Validity

The validity of inferences about whether observed covariation between A (the presumed treatment) and B (the presumed outcome) reflects a causal relationship from A to B as those variables were manipulated or measured.

External Validity

The validity of inferences about whether the cause-effect relationship holds over variation in persons, settings, treatment variables, and measurement variables.

25

Construct Validity

- Can we generalize results to the theoretical constructs that the units, treatments, observations, and settings are supposed to represent?
- E.g., whether
 - patient education (the target cause)
 - promotes physical recovery (the target effect)
 - > among surgical patients (the target population of units)
 - in hospitals (the target universe of settings)
- Do the actual manipulations and measures used in the experiment really

tap into the specific cause and effect constructs specified by the theory?

External Validity

- Does the causal relationship hold over variations in persons, settings, treatments, and outcomes?
 - Narrow to broad?
 - Broad to narrow?
 - Across units at the same level of aggregation?

A Few Threats to Internal Validity

Ambiguous Temporal Precedence:

Which variable occurred first?

Selection:

Systematic differences over conditions in respondent characteristics.

History:

Events occurring concurrently with treatment.

Maturation:

Naturally occurring changes over time confused with a treatment effect.

Regression:

When units are selected for their extreme scores, they will often have less extreme scores on other variables.

28

Regression to the Mean

- Phenomenon involving successive measurements on a given variable.
- Extreme observations tend to be followed by more central ones.
 - E.g., the children of extremely tall men tend not to be as tall as their father [Galton-1886].

A Few Threats to Internal Validity

Ambiguous Temporal Precedence:

Which variable occurred first?

Selection:

Systematic differences over conditions in respondent characteristics.

History:

Events occurring concurrently with treatment.

Maturation:

Naturally occurring changes over time confused with a treatment effect.

Regression:

> When units are selected for their extreme scores, they will often have less extreme scores on other variables.

Attrition:

Loss of respondents to treatment or to measurement.

Testing:

Exposure to a test can affect scores on subsequent exposures to that test.

Instrumentation:

The nature of a measure may change over time or conditions.

Statistical Conclusion Validity

- Two related statistical inferences that affect the covariation component of causal inferences:
 - whether the presumed cause and effect covary.
 - bow strongly they covary.
- Type | error:
 - incorrectly conclude that cause and effect covary when they do not.
- Type II error:
 - incorrectly conclude that they do not covary when they do.

A Few Threats to Statistical Conclusion Validity

- Low Statistical Power:
 - \rightarrow Type II errors
- Violated assumptions of statistical tests:
 - Either over- or underestimate the size and significance of an effect.
- Fishing:
 - Repeated tests can inflate statistical significance.
- Unreliability of measures
- Restriction of range on variable:
 - Typically weakens the relationship between it and another variable.
 - E.g., don't dichotomize.

Hypothesis Tests

Aka "significance tests"

Purpose:

- Could random chance be responsible for an observed effect?
- ► Null hypothesis (H₀):
 - The hypothesis that chance is to blame.
 - e.g., "There is no difference in the mean time to complete a task using NL2Code vs. writing code from scratch."

Alternative hypothesis (H_a):

- Counterpoint to the null (what you hope to prove).
- e.g., "It takes less time on average to complete a task using NL2Code rather than by writing code from scratch."

Aside: Why Do We Need a Hypothesis? Why Not Just Look at the Outcome of the Experiment and Go With Whichever Treatment Does Better?

Experiment: invent a series of 50 coin flips. Write down a series of random 1s and 0s: [1, 0, 1, 0, 1, 0, ...]

Aside: Why Do We Need a Hypothesis? Why Not Just Look at the Outcome of the Experiment and Go With Whichever Treatment Does Better?

- > Experiment: invent a series of 50 coin flips.
 - Write down a series of random 1s and 0s: [1, 0, 1, 0, 1, 0, ...]
- Humans have a tendency to underestimate randomness.
- Computer-generated "real" coin flip results vs made-up human results: the real ones will have longer runs of 1s or 0s.

 - median length of subsequences of 1s in a row:
 - 5 for the computer-generated sequences
 - > only 4 for the human-generated set
- When most of us are inventing random coin flips and we have gotten three or four 1s in a row, we tell ourselves that, for the series to look random, we had better switch to 0.

Aside: How Do You Interpret the P-Value?

- H₀: "There is no difference in the mean time to complete a task using NL2Code vs. writing code from scratch."
- H_a: "It takes less time on average to complete a task using NL2Code rather than writing code from scratch."
- You run some statistical test (e.g., t-test) and obtain a P-value.

Aside: P-Value Controversy

> What we would like the p-value to convey: We hope for a low value, so we can conclude that we've proved something.)

> What the p-value actually represents:

The probability that, given a chance model, results as extreme as the observed results could occur: $P(D|H_0)$

Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1105-1114).

Carnegie Mellon University

[17-803] Empirical Methods, Spring 2021

The probability that the result is due to chance: $P(H_0|D)$

The P Value Is the Probability of the Observed Outcome (X) Plus all "More Extreme" Outcomes

Graphical depiction of the definition of a (one-sided) P value. The curve represents the probability of every observed outcome under the null hypothesis.

The P Value Is the Probability of the Observed Outcome (X) Plus all "More Extreme" Outcomes

- Not the probability that the null hypothesis is true!
- > Example: Is a coin fair or not?
 - H_0 : The coin is fair: P(Heads) = P(Tails) = 1/2
 - > H_a : The coin is biased: P(Heads) ≠ 1/2

Consider Four Consecutive Coin Flips:

First toss:

Probability

?

Consider Four Consecutive Coin Flips:

First toss:

Second toss:

Probability

0.5

?

Consider Four Consecutive Coin Flips:

First toss:

Second toss:

Third toss:

Fourth toss:

Probability

0.5

0.25

0.125

0.0625

Is Coin Fair?

Two-sided P = 0.125.

0.0625

> This does not mean that the probability of the coin being fair is only 12.5%!

0.0625

Is Coin Fair?

> Two-sided P = 0.125.

0.0625

This does not mean that the probability of the coin being fair is only 12.5%!

 $P(H_0|D)$

0.0625

$P(D|H_0) P(H_0)$ P(D)

Common false belief that the probability of a conclusion being in error can be calculated from the data in a single experiment without reference to external evidence or the plausibility of the underlying mechanism.

Twelve P-Value Misconceptions

Table 1	Twelve P-Value Misconceptions
1	If $P = .05$, the null hypothesis has only a
2	A nonsignificant difference (eg, P \geq .05) m
3	A statistically significant finding is clinical
4	Studies with P values on opposite sides o
5	Studies with the same P value provide the
6	P = .05 means that we have observed dat
7	$P = .05$ and $P \le .05$ mean the same thing
8	P values are properly written as inequalitie
9	P = .05 means that if you reject the null h
10	With a $P = .05$ threshold for significance,
11	You should use a one-sided P value when
	that direction is impossible.
12	A scientific conclusion or treatment policy

Goodman, S. (2008, July). A dirty dozen: twelve p-value misconceptions. In Seminars in hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.

Carnegie Mellon University

5% chance of being true. neans there is no difference between groups. lly important. of .05 are conflicting. e same evidence against the null hypothesis.

ta that would occur only 5% of the time under the null hypothesis.

es (eg, " $P \le .02$ " when P = .015)

hypothesis, the probability of a type I error is only 5%.

the chance of a type I error will be 5%.

you don't care about a result in one direction, or a difference in

v should be based on whether or not the P value is significant.

Type I and T	ype II Errors	Study conclusion			
		No difference	Using NL2Code is faster		
Daality	No difference		Type I error		
Reality	Using NL2Code is faster	Type II error			

Type I and Type II Errors

In assessing statistical significance, two types of error are possible: > Type I: you mistakenly conclude an effect is real, when it is really just due to chance

- False positives
- - False negatives

Type II: you mistakenly conclude that an effect is due to chance, when it actually is real

The basic function of hypothesis tests is to protect against being fooled by random chance; thus they are typically structured to minimize Type I errors.

Controlling the Risks of Type Land Type II Errors

- > The probability of making a Type I error is called alpha. (or "significance level", "P-value")
- The probability of making a Type II error is called beta.
- \triangleright The statistical power of a test, defined as 1 β , refers to the probability of successfully rejecting a null hypothesis when it is false and should be rejected.
- **To reduce errors:**
 - Type I: P < 0.05</p>
 - Type II: large sample size

Aside: Torture the Data Long Enough, and It Will Confess.

- Imagine you have 20 predictor variables and one outcome variable, all randomly generated.
- > You do 20 significance tests at the alpha = 0.05 level (one per variable).
- What's the probability of Type I errors (false positives)?

Aside: Torture the Data Long Enough, and It Will Confess.

- Imagine you have 20 predictor variables and one outcome variable, all randomly generated.
- > You do 20 significance tests at the alpha = 0.05 level (one per variable).
- What's the probability of Type I errors (false positives)?
- The probability that one will correctly test nonsignificant is 0.95
- The probability that all 20 will correctly test nonsignificant is: > $0.95 \times 0.95 \times 0.95$..., or $0.95^{20} = 0.36$
- The probability that at least one predictor will (falsely) test significant:
 - 1 (probability that all will be nonsignificant) = 0.64

Credits

- Graphics: Dave DiCello photography (cover)
- Chapters from Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasiexperimental designs for generalized causal inference. Wadsworth Publishing
 - Ch1: Experiments and generalized causal inference
 - Ch2: Statistical conclusion validity and internal validity
 - Ch3: Construct validity and external validity
 - Ch8: Randomized experiments
- Bruce, P., Bruce, A., & Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts Using R and Python. O'Reilly Media.
- Freedman, D., Pisani, R., Purves, R., & Adhikari, A. (2007). Statistics.
- Goodman, S. (2008). A dirty dozen: Twelve pvalue misconceptions. In Seminars in Hematology (Vol. 45, No. 3, pp. 135-140). WB Saunders.

- Lazar, J., Feng, J. H., & Hochheiser, H. (2017). Research methods in human-computer interaction. Morgan Kaufmann.
 - Ch 3: Experimental design
 - Ch 4: Statistical analysis
- MacKenzie, I. S. (2012). Human-computer interaction: An empirical research perspective.
 - Ch 6: Hypothesis testing
- Robertson, J., & Kaptein, M. (Eds.). (2016). Modern statistical methods for HCI. Cham: Springer.
 - Ch 5: Effect sizes and power analysis
 - Ch 13: Fair statistical communication
 - Ch 14: Improving statistical practice
- Kaptein, M., & Robertson, J. (2012). Rethinking statistical analysis methods for CHI. In Proceedings of the SIGCHI **Conference on Human Factors in Computing Systems** (pp. 1105-1114).

52

Read

Ch 6 (Hypothesis testing)

Ch 1 (Experiments and causality) Ch 2 & 3 (Validity) Ch 8 (Randomized experiments)

Claes Wohlin - Per Runeson Martin Höst - Magnus C. Ohlsson Björn Regnell - Anders Wesslén

Experimentation in Software Engineering

2 Springer

Ch 10 (Analysis and interpretation)

Ch 5 (Effect sizes and power analysis) Ch 13 (Fair statistical communication) Ch 14 (Improving statistical practice)

Ch 6 (Statistical methods and measurement)

Ch 3 (Experimental design) Ch 4 (Statistical analysis)

