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Outline for Today
▸ More linear regression 

▸ Remember: 
▸ https://bvasiles.github.io/empirical-methods/ 
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Springer Texts in Statistics

An Introduction 
to Statistical 
Learning

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

with Applications in R

Ch 3 (Linear regression) Ch 22-24 (Modeling)

https://bvasiles.github.io/empirical-methods/
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Simple Linear Regression Example
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Let’s make it more realistic
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How To Extend our Analysis To Accommodate all Predictors?
▸ One option is to run three separate simple linear regressions.
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How To Extend our Analysis To Accommodate all Predictors?
▸ A better option is to give each predictor a separate slope coefficient in 

a single model: 

▸ We interpret βj as the average effect on Y of a one unit increase in Xj, 
holding all other predictors fixed. 
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Aside: Ingredients for Establishing a Causal Relationship

7

The cause preceded the effect

The cause was related to the effect

We can find no plausible alternative 
explanation for the effect other than the cause
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Back to our Advertising Example
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Interaction Effects
▸ Consider the standard linear regression model with two variables  

▸ According to this model, if we increase X1 by one unit, then Y will increase by 
an average of β1 units 
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Interaction Effects
▸ Extending this model with an interaction term gives:

10



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Interaction Effects
▸ Extending this model with an interaction term gives: 

▸ According to this model, adjusting X2 will change the impact of X1 on Y
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Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)
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Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

▸ Without an interaction term: fitting two 
parallel lines to the data, one for students 
and one for non-students.  

▸ The lines for students and non-students 
have different intercepts, β0 + β2 versus β0, 
but the same slope, β1.
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Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)
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Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

▸ With an interaction term: the regression 
lines for the students and the non-students 
have different intercepts, β0+β2 versus β0, 
and different slopes, β1+β3 versus β1.  

▸ Allows for the possibility that changes in 
income may affect the credit card balances 
of students and non-students differently. 
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It’s complicated.
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Potential Problem: Non-Linearity of the Data
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Potential Problem: Non-Linearity of the Data
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▸ Ideally, the residual plot will show no discernible pattern.  
▸ Otherwise, indicates nonlinear relationship in the data.
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Potential Problem: Non-Linearity of the Data
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▸ Contrast the example on the previous slide to the one we had earlier.
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Ouch!
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Another Example: Dealing With Non-Linearity
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linear regression of 
mpg on horsepower

linear regression of mpg on 
horsepower and horsepower^2
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Remember This 
Example?
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Potential Problem: 
Correlation of Error Terms
▸ Some causes: 
▸ Time series: observations at 

adjacent time points will have 
positively correlated errors  

▸ Also non time-series causes 

▸ Effect:  
▸ The estimated standard errors 

will tend to underestimate the 
true standard errors.

23

Plots of residuals from simulated time series data 
sets generated with differing levels of correlation 
between error terms for adjacent time points.
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Potential Problem: Non-Constant Variance of Error Terms (“Heteroscedasticity”)

24

▸ Symptom: the variances of the error terms may increase with the value of the response.

The funnel shape 
indicates 
heteroscedasticity. 

The response has 
been log 
transformed, and 
there is now no 
evidence of 
heteroscedasticity. 

Heteroscedasticity tends to produce p-values that are smaller than they should be.



Carnegie Mellon University [17-803] Empirical Methods, Spring 2021

Potential Problems: Outliers and High Leverage Points
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Potential Problems: Outliers and High Leverage Points
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Remember the 
Earlier Example?
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Potential Problem: Collinearity
▸ Here’s an extreme example of 

perfectly collinear data. 

▸ By construction, x1 and x2 are 
exactly the same variable, and 
the outcome y is perfectly 
modeled as
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Potential Problem: Collinearity
▸ Here’s an extreme example of 

perfectly collinear data. 

▸ By construction, x1 and x2 are 
exactly the same variable, and 
the outcome y is perfectly 
modeled as 

▸ But there’s a problem… because 
the following are also true
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Potential Problem: Collinearity
▸ Here’s an extreme example of 

perfectly collinear data. 

▸ By construction, x1 and x2 are 
exactly the same variable, and 
the outcome y is perfectly 
modeled as 

▸ But there’s a problem… because 
the following are also true
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Effects:  
‣ The model is unable to accurately distinguish 

between many nearly equally plausible linear 
combinations of colinear variables.  

‣ This can lead to large standard errors on coefficients, 
and even coefficient signs that don’t make sense.
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Potential Problem: Collinearity
▸ Here’s an extreme example of 

perfectly collinear data. 

▸ By construction, x1 and x2 are 
exactly the same variable, and 
the outcome y is perfectly 
modeled as 

▸ But there’s a problem… because 
the following are also true
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Activity: How To Address These Questions?
▸ Is there a relationship between advertising budget and sales? 
▸ How strong is the relationship between advertising budget and sales? 
▸ Which media contribute to sales? 
▸ How accurately can we estimate the effect of each medium on sales?  
▸ How accurately can we predict future sales? 
▸ Is the relationship linear? 
▸ Is there synergy among the advertising media?
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Another interaction example
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What happens when you combine a continuous and a categorical variable?
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There are two possible models you could fit to this data
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mod1 <- lm(y ~ x1 + x2, data = sim3) 
mod2 <- lm(y ~ x1 * x2, data = sim3)
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*: Both the interaction and the individual components are included in the model
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mod2 <- lm(y ~ x1 * x2, data = sim3) 
y = a_0 + a_1 * x1 + a_2 * x2 + a_12 * x1 * x2
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The model using * has a different slope and intercept for each line
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Which model is better for this data?
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Another example
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Why are low quality diamonds more expensive?

40

▸ Fair: worst cut
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Why are low quality diamonds more expensive?
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▸ I1: inclusions 
visible to the naked 
eye (worst clarity)
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Why are low quality diamonds more expensive?
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▸ J: slightly yellow 
(worst color)
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Because lower quality diamonds tend to be larger
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▸ The weight of the diamond is the single most important 
factor for determining the price of the diamond. 
▸ Left: raw 
▸ Right: log-transformed
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Let’s remove that strong linear pattern
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▸ Residuals confirm that we’ve successfully 
removed the strong linear pattern.
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Now we see the relationship we expect
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▸ Re-did our motivating 
plots using those 
residuals instead of 
price. 

▸ Fair: worst cut
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Now we see the relationship we expect
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▸ I1: inclusions visible to 
the naked eye (worst 
clarity)
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Now we see the relationship we expect
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▸ J: slightly yellow 
(worst color)
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Now we see the relationship we expect
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▸ Re-did our motivating plots using those 
residuals instead of price.
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Regression Diagnostics on the Diamonds Example
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Another example
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The number of flights that leave NYC per day
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A very strong day-of-week effect dominates the subtler patterns
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Modeling the week day effect
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mod <- lm(n ~ wday, data = daily)
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Visualizing the residuals
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Our model seems to fail starting in June
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The model fails to accurately predict the number of flights on Saturday
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Let’s create a “term” variable that roughly captures the three school terms
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Fitting a separate day of week effect for each term improves our model
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mod1 <- lm(n ~ wday, data = daily) 
mod2 <- lm(n ~ wday * term, data = daily)
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