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Outline for Today

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

» More linear regression

Vs e
4R for Data
Sclence

VISUALIZE, MODEL, TRANSFORM, TIDY, AND IMPORT DATA

with Applicationsin R

Hadley Wiclkham &
Garrett Grolemunc

@ Springer

Ch 3 (Linear regression) Ch 22-24 (Modeling)

» Remember:
» https://bvasiles.github.io/empirical-methods/
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https://bvasiles.github.io/empirical-methods/

simple Linear Regression Example

i

## Call:

## lm(formula = yl ~ x1, data = anscombe)
FH

## Residuals:

## Min 10 Median 30 Max ! | |
## -1.92127 -0.45577 -0.04136 0.70941 1.83882 5 10 15
T

## Coefficients:

A Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 3.0001 1.1247 2.667 0.02573 *

## x1 0.5001 0.1179 4,241 0.00217 *=*

HH#H ———

## Signif. codes: 0 '*x*' 0.001 '**x' 0.01 '*' 0.05 '.' 0.1 ' " 1
##

## Residual standard error: 1.237 on 9 degrees of freedom

## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295

## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217




Let's make 1t more realistic



How To Extend our Analysis To Accommodate all Predictors?

» One option is to run three separate simple linear regressions.

Coeflicient Std. error t-statistic p-value

Intercept 7.0325 0.4578 15.36 < 0.0001
TV 0.0475 0.0027 17.67 < 0.0001

Coefficient Std. error t-statistic p-value
Intercept 0.312 0.563 16.04 < 0.0001
radio 0.203 0.020 9.92 < 0.0001

Coeflicient Std. error t-statistic p-value

Intercept 12.351 0.621 19.88 < 0.0001
newspaper 0.055 0.017 3.30 0.00115




How To Extend our Analysis To Accommodate all Predictors?

» A better option is to give each predictor a separate slope coefficient in
a single model:

Y = Bo+ 81Xy + B2 Xo +-- -+ Bp Xy + €,

sales = [y + 81 X TV + B9 X radio + 33 X newspaper — €.

» We interpret 3j as the average effect on Y of a one unit increase in X,
holding all other predictors fixed.
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Aside: Ingredients for Establishing a Causal Relationship

The cause was related to the effect

We can find no plausible alternative
explanation for the effect other than the cause
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Back to our Advertising Example

Coefficient
Intercept 7.0325

TV 0.0475

Coefficient
Intercept 9 312

radio 0.203

Coeflicient
Intercept 12.351

newspaper 0.055

Std. error

0.4578
0.0027

Std. error
0.563
0.020

Std. error

0.621
0.017

Coeflicient
Intercept 2.939
TV 0.046
radio 0.189

newspaper —0.001

t-statistic p-value

15.36 < 0.0001
17.67 < 0.0001

t-statistic
16.54
9.92

t-statistic p-value
19.88 < 0.0001
3.30 0.00115

Std. error
0.3119
0.0014
0.0086
0.0059

t-statistic
9.42
32.81
21.89
—0.18

p-value
< 0.0001

< 0.0001
< 0.0001

0.8599 |




Interaction Effects

» Consider the standard linear regression model with two variables

Y = B0+ 01X1 4+ [2X2 + €

» According to this model, if we increase X1 by one unit, then Y will increase by
an average of B1 units
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Interaction Effects

» Extending this model with an interaction term gives:

Y = Bo+ 1 X1+ 2 Xo + B3 X1X2 + €.

Carnegie Mellon University [17-803] Empirical Methods, Spring 2021
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Interaction Effects

» Extending this model with an interaction term gives:

Y = Bo+ 1 X1+ 2 Xo + B3 X1X2 + €.

Bo + (B1 4+ B3 X2) X1 + B2 X2 + €
Bo + 1 X1+ P2 X2 + €

» According to this model, adjusting X2 will change the impact of X1 onY




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

1f 2th 1S a student
~ /80 + ,81 X 1lncome; — {Bz 1117 person 1s

0 if +th person is not a student

Bo + Bo if ith person is a student
Bo if 7th person is not a student.

B1 X income; + {




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

B if 7th person is a student

By + £1 X income; + {

0 if +th person is not a student

{, if 7th person is a student
B1 X income; +

if +th person is not a student.

—— student » Without an interaction term: fitting two
— non-student parallel lines to the data, one for students
and one for non-students.

» The lines for students and non-students
have different intercepts, B0 + 32 versus 30,
but the same slope, 1.

10 100

Income




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

B + (B3 X income; if student

balance; + 01 X income; + :
Bo + b1 {O if not student

Bo + B1 X income; if not student

{(ﬁo + B2) + (81 + B3) X income; if student




Example: Model Credit Card Balance Using Income (Numerical) and Student (Categorical)

3o + X income; 1f student
balance; Bo + 81 X income; + < 2+ s ‘ ,
0 if not student

(Bo + B2) + (81 + B3) X income; if student
Bo + B1 X income; if not student

— student » With an interaction term: the regression
— hon-student lines for the students and the non-students

have different intercepts, p0+[2 versus 30,
and different slopes, B1+3 versus 1.

» Allows for the possibility that changes in
income may affect the credit card balances

of students and non-students differently.




it's complicated.



Potential Problem: Non-Linearity of the Data
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Potential Problem: Non-Linearity of the Data

Residuals vs Fitted

0
©
-

e,
T
)

4

Fitted values

» Ideally, the residual plot will show no discernible pattern.
» Otherwise, indicates nonlinear relationship in the data.




Potential Problem: Non-Linearity of the Data

Residuals vs Fitted

0
®
-

e,
T
)

4

Fitted values

» Contrast the example on the previous slide to the one we had earlier.




##
#H
##
##
#H#
##
##
##
##
##
##
#H
##
##
i
##
#H#
#H

10 12

6 8

4

Call:

Im(formula = yl ~ x1, data = anscombe)
Residuals:

Min 10 Median 30 Max
-1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.0001 1.1247 2.667 0.02573 =*
x1 0.5001 0.1179 4,241 0.00217 **
Signif. codes: O '***' (0.001 '**' 0.01 '*' 0.05 '."' 0.1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
rF-statistic: L/.Y9Y on L and 9 DF, p-value: 0.00217

Call:
Im(formula = y2 ~ x2, data = anscombe)

Residuals:
## Min 10 Median 30 Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691

Coefficients:

#H# Estimate Std. Error t value Pr(>|t]|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## | x2 0.500 0.118 4.239 0.00218 **

Signif. codes: 0 '***' (0,001 '**' 0.01 '*' 0.05 '."'" 0.1 ' " 1

Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179




Another Example: Dealing With Non-Linearity

linear regression of linear regression of mpg on
mpg on horsepower horsepower and horsepower”2

Residual Plot for Linear Fit Residual Plot for Quadratic Fit

-
Q\
334

Residuals
Residuals

| | | | | | | | | |
10 15 20 25 30 15 20 25 30 35

Fitted values Fitted values




Residuals

Fitted values

Remember This
Example?

Residuals

Fitted values




Potential Problem:
Correlation of Error Terms

Residual

» Some causes:

» Time series: observations at
adjacent time points will have
positively correlated errors

©
3
-
7
o)
o

» Also non time-series causes

» Effect:

» The estimated standard errors
will tend to underestimate the
true standard errors.

| | — |

Residual
-1.5 =05 05

Plots of residuals from simulated time series data
sets generated with differing levels of correlation

between error terms for adjacent time points. Observation




Potential Problem: Non-Constant Variance of Error Terms (“Heteroscedasticity’)

» Symptom: the variances of the error terms may increase with the value of the response.

Response Y Response log(Y)
The response has

been log
transformed, and
there is now no
evidence of
heteroscedasticity.

The funnel shape
indicates
heteroscedasticity.

0.4

0.2

Residuals
Residuals

S
o
N
O

|
<
o

|
©
=)

|
x
Q

20

Fitted values Fitted values

Heteroscedasticity tends to produce p-values that are smaller than they should be.




Potential Problems: Qutliers and High Leverage Points

Residuals vs Fitted

Residuals
Residuals

Fitted values Fitted values




Potential Problems: Qutliers and High Leverage Points

Residuals vs Leverage

| |
(-] —
@)

Standardized residuals
Standardized residuals
I

. Og L
- Cook's distance - —- Cook's distance O7
I [ | [ [ | [ [ |

0.10 0.20 . 0.00 002 004 006 0.08 0.10

O
o

Leverage Leverage
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Call:

Im(formula y3 — x3, data anscombe)
Residuals:

10 Median
-1.1586 -0.6146 -0.2303

0.1540 3.2411

Coefficients:
Pr(>|t]|)

0.02562 *
0.00218 =*x*

Estimate Std. Error t value
3.0025
0.4997

1.1245
0.1179

2.670
4,239

(Intercept)

"% %'

Signif. codes: 0.001
Residual standard error:
0.6663, Adjusted R-squared:
0.002176

1.236 on 9 degrees of freedom
Multiple R-squared:
17.97 on 1 and 9 DF,

o e o i G i G i i

F-statistic: p-value:

Remember the
Earlier Example?

## Call:

## lm(formula yv4d ~ x4, data anscombe )

e Min

## Residuals:
10 Median

## -1.751 -0.831 0.000 0.809 1.839

##

#4 x4

## Coefficients:

Std. Error t value Pr(>|t|)
0.02559 +*
0.00216 *=

Estimate
3.0017
0.4999

1.1239
0.1178

2.671
4,243

#4 (Intercept)

.U 0.1 Y N1

"k %'

## Signif. codes: 0.001

0.6292

## Residual standard error:
## Multiple R-squared:
## F-statistic:

1.236 on 9 degrees of freedom
0.6297
0.002165

0.6667,
18 on 1 and 9 DF,

Adjusted R-squared:
p-value:



Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome vy is perfectly




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1l = c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome y is perfectly

» But there's a problem... because
the following are also true

y = 2x

y=3x —x

y = —400x; + 402x,




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome vy is perfectly

modeled as Effects:

» Butthere's a problem... because » The model is unable to accurately distinguish
the following are also true between many nearly equally plausible linear
combinations of colinear variables.

» This can lead to large standard errors on coefficients,

y =3x; —x and even coefficient signs that don’'t make sense.

y = 2x;

y = —400x; + 402x,




Potential Problem: Collinearity

» Here's an extreme example of

perfectly collinear data. my.data <- data.frame(y = c(12,
) x1 c(6,
» By construction, x1 and x2 are x2 = (6,

exactly the same variable, and
the outcome y is perfectly

» But there's a problem... because # Evaluate Collinearity

the following are also true library (car)
vif (fit) # variance inflation factors
y = 2x1 sqrt (vif (fit)) > 2 # problem?

y = 3x; —x

;y:=:-—4(N)x1-+-4(XZx2




Activity: How To Address These Questions?

Is there a relationship between advertising budget and sales?

How strong is the relationship between advertising budget and sales?
Which media contribute to sales?

How accurately can we estimate the effect of each medium on sales?
How accurately can we predict future sales?

s the relationship linear?

Is there synergy among the advertising media?



Another Interaction example



What happens when you combine a continuous and a categorical variable?

9..




There are two possible models you could fit to this data

9..

modl <- 1Im(y ~ x1 + x2, data = sim3)
mod2 <- Im(y ~ x1 * x2, data = sim3)




*: Both the Interaction and the individual components are included in the model

v mod2 <- lm(y ~ x1 * x2, data = sim3)

y =a 0+ al*xl+ a2 *x2+ al2* xl * x2




The model using * has a different slope and intercept for each line




Which model 1s better for this data?

75 100 25 50 75 100 25 50 75
X1




Another example



Why are low quality diamonds more expensive?

0




Why are low quality diamonds more expensive?

» 11: inclusions
‘ visible to the naked
eye (worst clarity)

=

VS2 VS1 VVS2 VVS1 IF
clarity




Why are low quality diamonds more expensive?

» J: slightly yellow
(worst color)




Because lower quality diamonds tend to be larger

lcarat

» The weight of the diamond is the single most important
factor for determining the price of the diamond.

» Left: raw
» Right: log-transformed




Let's remove that strong linear pattern

lcarat

mod_diamond <- Llm(lprice ~ lcarat, data = diamonds2) » Residuals contfirm that we've SucceSSfu”y
removed the strong linear pattern.




Now we see the relationship we expect

Very Good Premium
cut

» Re-did our motivating
plots using those
residuals instead of
price.

» Fair: worst cut




Now we see the relationship we expect

;- » 11: inclusions visible to

the naked eye (worst
clarity)

VS2 VS VVS2 VVS1 IF
clarity




Now we see the relationship we expect

2- » J:slightly yellow

(worst color)

-2 -

o
D E F G H
color




» Re-did our motivating plots using those
residuals instead of price.




Regression Diagnostics on the Diamonds Example

diamonds.lm <- lm(price ~ carat diamonds.lm2 <- Im(log(price) ~ I (log(carat))
+ cut + cut

+ clarity + clarity
+ color, + color,
data = diamonds) data = diamonds)

Residuals vs Fitted Residuals vs Fitted

O
N
L
—

1.0

Residuals
Residuals

O
Q
C 25999

0.5 00 0.5

-1.0

I
10000 20000 8

Fitted values Fitted values
Im(price ~ carat + cut + clarity + color) Im(log(price) ~ I(log(carat)) + cut + clarity + color)




Another example



The number of flights that leave NYC per day

1000 -

Jul 2013 Oct 2013
date




A very strong day-of-week effect dominates the subtler patterns

1000 - |

== ==
|




Modeling the week day effect

mod <- Im(n ~ wday, data = daily)
1000 -




Visualizing the residuals




Our model seems to fail starting in June

Jul 2013 Oct 2013
date




The model fails to accurately predict the number of flights on Saturday

I




Let's create a “term” variable that roughly captures the three school terms

s

e Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan




Fitting a separate day of week effect for each term improves our model

-300- modl <- Im(n ~ wday, data = daily)
mod2 <- Im(n ~ wday * term, data = daily)

Jan 2013 Apr 2013 Jul 2013 Oct 2013
date
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