17-803 Empirical Methods Bogdan Vasilescu, Institute for Software Research

Tuesday, April 13, 2021

Photo credit: <u>Dave DiCello</u>

-in-Diff & Causalmpac

Plan for Today

- Diff in diff model
- Causal Impact (see <u>https://youtu.be/GTgZfCltMm8</u>)

Read this if you get a chance ->

JUDEA PEARL WINNER OF THE TURING AWARD AND DANA MACKENZIE

THE BOOK OF WHY

THE NEW SCIENCE OF CAUSE AND EFFECT

[17-803] Empirical Methods, Spring 2021

Diff-in-diff

Slides from: Rajendran, P. Causal Inference using Difference in Differences, Causal Impact, and Synthetic Control. <u>https://towardsdatascience.com/causal-inference-using-difference-in-differences-causal-impact-and-synthetic-control-f8639c408268</u>

The Key Concept

- The difference-in-difference (diff-in-diff) is a powerful model which allows us to look at the effect of an intervention by taking into consideration:
 - how a group mean changes before and after a policy intervention (treatment group) AND
 - compare this change with the mean over time of a similar group which did not undergo the treatment (control group).

The Key Concept

- For two groups, we observe the avg outcome before & after intervention.
- > The diff-in-diff estimator is the difference of their mean differences:
 - Diff-in-Diff estimate =

(Treatment_post - Treatment_pre) -(Control_post - Control_pre)

- For example, the difference-indifference based on the figure:
 - (85 50) (55 35) = 15

The Statistical Model

 $Y = \beta 0 + \beta 1 * \text{Treatment} + \beta 2 * \text{Post} + \beta 3 * \text{Treatment} * \text{Post} + e$

Subject	Outcome	Treatment	Post	Treatment * Post
1	74	1	1	1
1	46	1	0	0
2	96	1	1	0
2	54	1	0	1
3	50	0	1	0
3	30	0	0	0
4	60	0	1	0
4	40	0	0	0

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	T:P	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu

r(>|t|) <2e-16 *** <2e-16 *** <2e-16 *** <2e-16 *** 0.05 '.' 0.1 ' ' 1 ees of freedom red: 1 ue: < 2.2e-16

Group

7

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	T:P	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu

t	Gro	oup
r	oup	

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	T:P	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu


```
r(>|t|)
<2e-16 ***
<2e-16 ***
<2e-16 ***
<2e-16 ***
0.05 '.' 0.1 ' ' 1
ees of freedom
red: 1
ue: < 2.2e-16</pre>
```


G	roup	
n	Group	

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	T:P	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	Т:Р	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu

[17-803] Empirical Methods, Spring 2021

11

##						
##	Call:					
##	lm(formula =	Y ~ T +	Р + Т	* P)		
##						
##	Coefficients	:				
##		Estimat	e Std.	Error	t val	ue Pi
##	(Intercept)	3.500e+0	1 1.95	4e-14 1	L.791e+	-15
##	т	1.500e+0	1 2.76	4e-14 5	5.427e+	-14
##	Р	2.000e+0	1 2.76	4e-14 7	7.236e+	-14
##	T:P	1.500e+0	1 3.90	9e-14 3	3.837e+	-14
##						
##	Signif. code	s: 0 '*	**' 0.0	01 '**'	0.01	'*' (
##						
##	Residual sta	ndard er	ror: 2.	764e-14	l on 4	degre
##	Multiple R-s	quared:	1,	Adjus	sted R-	-squai
##	F-statistic:	1.151e+	30 on 3	and 4	DF, F	-valu

##								
##	Call:							
##	lm(formula =	= Y ~	T + F	у + т	* P)			
##								
##	Coefficients	5:						
##		Esti	mate	Std.	Error	t t	value	P
##	(Intercept)	3.500	e+01	1.95	54e-14	1.79	1e+15	1
##	Т	1.500	e+01	2.76	54e-14	5.42	7e+14	1
##	Р	2.000	e+01	2.76	54e-14	7.23	6e+14) 1
##	T:P	1.500	e+01	3.90)9e-14	3.83	7e+14	1
##								
##	Signif. code	es: 0	'***	' 0.0)01 '*	*' 0.	01 '*	' (
##								
##	Residual sta	andard	erro	or: 2.	764e-	14 on	4 de	gre
##	Multiple R-s	square	d :	1,	, Adj	usted	R-sq	ua
##	F-statistic:	1.15	1e+30	on 3	3 and	4 DF,	p-v	alı

[17-803] Empirical Methods, Spring 2021

Causal Impact https://google.github.io/CausalImpact/CausalImpact.html

Slides from: Inferring the effect of an event using CausalImpact by Kay Brodersen, Big Data Spain 2016 Conference <u>https://youtu.be/GTgZfCltMm8</u>

Key Idea

- The motivation to use Causal Impact methodology is that the Difference in differences in limited in the following ways:
 - > DD is traditionally based on a static regression model that assumes independent and identically distributed data despite the fact that the design has a temporal component.
 - Most DD analyses only consider two time points: before and after the intervention. In practice, we also have to consider the manner in which an effect evolves over time, especially its onset and decay structure.
- The idea is to use the trend in the control group to forecast the trend in the treated group which would be the trend if the treatment had not happened.
- Then the actual causal estimate would be the difference in the actual trend vs. the counter-factual trend of the treated group that we predicted.
- Causal Impact uses Bayesian structural time-series models to explain the temporal evolution of an observed outcome.

15

A Simple Example

counterfactual estimate Y(0) (synthetic control)

Jmm observed data Y(1)

[17-803] Empirical Methods, Spring 2021

A Harder Example

Inference

Carnegie Mello

Estimating the Effect

Causal Effect of Advertising on Clicks

Credits

- Graphics: Dave DiCello photography (cover)
- > Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.
- Rajendran, P. Causal Inference using Difference in Differences, Causal Impact, and Synthetic Control. <u>https://towardsdatascience.com/causal-inference-using-difference-in-differences-</u> causal-impact-and-synthetic-control-f8639c408268
- Foundations of Program Evaluation III <u>https://ds4ps.org/cpp-525-spr-2020/schedule/</u>
- Gertler, P. J., Martinez, S., Premand, P., Rawlings, L. B., & Vermeersch, C. M. (2016). Impact evaluation in practice. The World Bank.
- > Wing, C., Simon, K., & Bello-Gomez, R. A. (2018). Designing difference in difference studies: best practices for public health policy research. Annual review of public health, 39.
- See also:
 - https://www.rdocumentation.org/packages/did/versions/2.0.0
 - <u>https://google.github.io/CausalImpact/CausalImpact.html</u>

