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Naïve Verification Attempt
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int findMax(Node l)

ensures max(result,l) && contains(result,l) 

{  

int m := l.val;

Node curr := l.next;

while(curr != null) {

if(curr.val > m) {

m := curr.val;

}

curr := curr.next;

}

return m;

}



Naïve Verification Attempt: Additional Specifications
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int findMax(Node l)

ensures max(result,l) && contains(result,l) 

{  

int m := l.val;

Node curr := l.next;

while(curr != null)                   {

if(curr.val > m) { m := curr.val; }

curr := curr.next;

}

return m; 

}

int findMax(Node l)

ensures max(result,l) && contains(result,l)

{

int m := l.val;

Node curr := l.next;

while(curr != null)                   {

if(curr.val > m) { m := curr.val; }

curr := curr.next;

}

return m;

}

requires l != null
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• without unnecessary effort
• with immediate feedback

Gradual verification allows developers to deal with 
specification cost incrementally

by leveraging static & dynamic verification techniques



Gradual Verification Framework [Bader et al.’18]
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[Wise et al.’20] extends [Bader et al.’18] with Recursive Heap Data Structures
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Limitation: Abstract Theoretical Definitions 

෫𝑊𝐿𝑃 … , ෨𝜙 = 𝛼( 𝑚𝑎𝑥⇒ … … })
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𝛼 ത𝜙 = 𝑚𝑖𝑛⊑{… }
Can we implement important 

abstract definitions?

Can our implementation smoothly support the 

trade-off between static & dynamic checking?



Limitation: Eliminating Dynamic Checks Not Supported
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Gradualizing the Viper Static Verifier

Implicit Dynamic 

Frames (IDF) 

[Smans et al.’09]
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Theory Research Questions

[RQ1] Is our verifier sound?

[RQ2]  Does our verifier support incrementality?
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Prove our verifier design is sound.

Prove our verifier design adheres to the gradual 

guarantee.



Empirical Research Questions: 

Exploring Trade-off Between Static & Dynamic Checking

[RQ1]  As the lines of correct specification code in programs containing recursive 

heap data structures increase/vary, what trends emerge from the percentage of 

VCs verified statically vs dynamically?

[RQ2]  As the lines of correct specification code in programs containing recursive 

heap data structures increase/vary, what trends emerge from how long it takes to 

dynamically verify the program?
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Study Design
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Study Design
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Study Design
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Incremental static verification is made possible with Gradual Verification

Prior Work Limitations Current & Future Work 

• Prototype implementation

• Proofs: soundness, 

gradual guarantee

• Empirical Study: static & 

dynamic trade-off

1. Theoretical 

definitions

2. 100% Dynamic 

checking

Solution

Designing & implementing symbolic execution 

based gradual verifier


