
Empirically Evaluating

Gradual Verification

Jenna Wise
(Carnegie Mellon University)

Mona Zhang (Columbia University), Jacob Gorenburg (Haverford College),
Jonathan Aldrich (Carnegie Mellon University),

Éric Tanter (University of Chile), Joshua Sunshine (Carnegie Mellon University)

1

Naïve Verification Attempt

2

int findMax(Node l)

ensures max(result,l) && contains(result,l)

{

int m := l.val;

Node curr := l.next;

while(curr != null) {

if(curr.val > m) {

m := curr.val;

}

curr := curr.next;

}

return m;

}

Naïve Verification Attempt: Additional Specifications

3

int findMax(Node l)

ensures max(result,l) && contains(result,l)

{

int m := l.val;

Node curr := l.next;

while(curr != null) {

if(curr.val > m) { m := curr.val; }

curr := curr.next;

}

return m;

}

int findMax(Node l)

ensures max(result,l) && contains(result,l)

{

int m := l.val;

Node curr := l.next;

while(curr != null) {

if(curr.val > m) { m := curr.val; }

curr := curr.next;

}

return m;

}

requires l != null

FOLDS/UNFOLDS

FOLDS/UNFOLDS

LEMMAS

FOLDS/UNFOLDS

LOOP INVARIANTS

4

• without unnecessary effort
• with immediate feedback

Gradual verification allows developers to deal with
specification cost incrementally

by leveraging static & dynamic verification techniques

Gradual Verification Framework [Bader et al.’18]

5

Static

Verification

System

Optimistic

Static

Verification

System

Dynamic

Verification

System

Abstracting

Gradual Typing

[Garcia et al.’16]

Gradual

Verification

System

𝝓 | ? ∗ 𝝓

soundness,

gradual

guarantee,

conservative

extension

[Wise et al.’20] extends [Bader et al.’18] with Recursive Heap Data Structures

Lists Trees

…

Graphs

6

Limitation: Abstract Theoretical Definitions

෫𝑊𝐿𝑃 … , ෨𝜙 = 𝛼(𝑚𝑎𝑥⇒ … … })

7

𝛼 ത𝜙 = 𝑚𝑖𝑛⊑{… }
Can we implement important

abstract definitions?

Can our implementation smoothly support the

trade-off between static & dynamic checking?

Limitation: Eliminating Dynamic Checks Not Supported

8

100% Dynamic

Checking

100%

Dynamic

Checking

9

Gradualizing the Viper Static Verifier

Implicit Dynamic

Frames (IDF)

[Smans et al.’09]

Abstract

Predicates

[Parkinson et

al.’05]

Accompanying

PhD Thesis

Symbolic

Execution

Theory Research Questions

[RQ1] Is our verifier sound?

[RQ2] Does our verifier support incrementality?

10

Prove our verifier design is sound.

Prove our verifier design adheres to the gradual

guarantee.

Empirical Research Questions:

Exploring Trade-off Between Static & Dynamic Checking

[RQ1] As the lines of correct specification code in programs containing recursive

heap data structures increase/vary, what trends emerge from the percentage of

VCs verified statically vs dynamically?

[RQ2] As the lines of correct specification code in programs containing recursive

heap data structures increase/vary, what trends emerge from how long it takes to

dynamically verify the program?

11

Study Design

12

Code Samples

15-122

Student

Generated

Lab

Generated

Aggregate

& Display

Study Design

13

Gradual

Verifier

Code Samples

15-122

Student

Generated

Lab

Generated

Aggregate

& Display

Study Design

14

Gradual

Verifier

Code Samples

15-122

Student

Generated

Lab

Generated

Correctly

Verified:

T/F?

of VCs

Verified

Statically

of VCs

Verified

Dynamically

Time to

Complete

Dynamic

Verification

Aggregate

& Display

Collect,

Aggregate,

Display!

RQ1 RQ1

RQ2

Total # of

VCs Verified

RQ1

15

Incremental static verification is made possible with Gradual Verification

Prior Work Limitations Current & Future Work

• Prototype implementation

• Proofs: soundness,

gradual guarantee

• Empirical Study: static &

dynamic trade-off

1. Theoretical

definitions

2. 100% Dynamic

checking

Solution

Designing & implementing symbolic execution

based gradual verifier

