Network Analysis:

The Hidden Structures behind the Webs We Weave
17-213 / 1]-668

v

Diffusion and Contagion
Tuesday, December 5, 2023

Patrick Park & Bogdan Vasilescu

Carnegie Mellon University
School of Computer Science



2-min Quiz, on Canvas




Information Diffusion




Spread the word: Viral marketing

Question: Who should you target in a network to “maximize” information
cascades?

- 74M separate diffusion events (Twitter retweets of URLS)

- Influence of the seed node: # of nodes in the diffusion tree

- Seed node’s attributes (followers, friends, tweets) and previous success of the seed node most
predictive of average influence scores of the leaf nodes (clusters) in the regression tree

Answer: Hard to predict



Diffusion is difficult to predict

Actual Influence

Highly accurate predictions of within-

leaf average influence scores

-Regression tree model not so predictive of individual
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-Weak effect of the nature of the content

-With these “null” results, the paper pivots to asking a
slightly different question: Who should you target to
“optimize” information cascades (i.e., introduce cost
constraint)?
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Structural virality of diffusion

How do information cascades look like?

Structural virality (Wiener index)
- Average path length in a diffusion tree

1 n n
v(T) = nn—1) szij

Recall, =1j=1

In a tree



Structural virality of diffusion

Structural virality (Wiener index)
- Average path length in a diffusion tree

1 n n
V(1) = n(n—1) szij

i=1 j=1




Structural virality of diffusion

Structural virality (Wiener index)
- Average path length in a diffusion tree

Level 0

1 n n
V(1) = n(n—1) szij

i=1 j=1

Recall, d ~ Ln(N) / Ln<k>
In a complete binary tree

- N=2*0+2"1+...2*h

- Ln(N) ~h*Ln(2)

- h~Ln(N)/Ln(2) — <k> =2

- h~Ln(N)/ Ln<k> el
_ d ~ h eve

Level 1




Structural virality of diffusion

Examples of information cascade

trees in increasing order of virality
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Distribution of Cascade Sizes on a Log-Log Scale,
Aggregated Across the Four Domains We Study:
Videos, News, Pictures, and Petitions
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10 -

1.0+

0.1+

0.01 -

CCDF (%)

0.001
0.0001 —

0.00001
T T T T T

1 10 100 1,000 10,000
Cascade size
Note. CCDF, complementary cumulative distribution function.



Structural virality of diffusion

Does structural virality correlate
with cascade size?

Figure 4 Size and Structural Virality Distributions on a Log-Log Scale for Cascades Containing at Least 100 Adopters,

Separated by Domain
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Structural virality of diffusion

Does structural Vira|ity correlate Figure 6  Correlation Between Cascade Size (Popularity) and
. . Structural Virality Across Four Domains
with cascade size?
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True vs. False information diffusion

False news diffuses much faster, reaches broader audience, and penetrates
more deeply
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Social Contagion: Costly spreading




Simple Contagion

A single contact leads to adoption/contagion (e.g., virus)
Spreads quickly in networks with low CPL (e.g., small-world)

Individual with a diverse egonetwork can “infect” disproportionately
(e.qg., super spreaders)
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Dynamics of Behavioral Change

Model the effect of network structure on the spread and adoption of behaviors through
network ties

Three Mechanisms of social adoption
-Common environmental influence

-Homophily (e.g., similar taste)
-Social influence

Very difficult to disentangle these mechanisms with observational data
(e.g., Framingham study of the spread of obesity)

15


https://www.nejm.org/doi/full/10.1056/nejmsa066082

Dynamics of Behavioral Change

|dentification strategy: experimental approach
- Create two separate worlds, with and without social influence
- Observe adoption behavior in the two worlds
- Example: The Music Lab experiment
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Dynamics of Behavioral Change

Weak influence condition

Strong influence condition
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Threshold models of adoption

Cumulative Distribution CCD(r)

Hypothetical threshold distribution Some social behaviors require more than

A

A

single exposure for adoption

- Individuals can have different levels of
reluctance/resistance (thresholds)
CCD(r)=r
- Variance in norms, preferences, utility lead
to a distribution of thresholds

- Toy example: If an initial adoption occurs,
adoption will reach 100% (saturation)

A 4

Threshold (r)
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Threshold models of adoption

100%

F(x)--
cumulative
distribution
function of
thresholds

0%

F16. 1.—Graphical method of finding the equilibrium point of a threshold distribution.

45%1ine: F(x)=x
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Some social behaviors require more than
single exposure for adoption

- Assumption 1: People have perfect
information about adoption at time ¢

- Assumption 2: Individual’s threshold
pertains to population adoption, not
local adoption
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Threshold models of adoption

Hypothetical threshold distribution
4 Sensitivity of collective behavior

- A negligible change to the threshold
distribution can lead to vastly different
equilibria

CCD(r)=r

v

Threshold (r)

Cumulative Distribution CCD(r)

v
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Complex Contagion

0.7

0.6

¢ o
o

Fraction Adopted
o (=]
w »

o
)

0.1

oY

0 2 4 6 8 10 12 14
Time (Days)

0 2 4 6 8 10 12 14
Time (Days)
4V@7w747%ﬂ —v

1], S S S ——
0 2 4 6 8 1012 14 16 18 20 22

Time (Days)

0.7

0.6

o
3

04

0.3

Fraction Adopted

o
o

=

T4

)

5

el

o)
0o 2 4 6 8 10 12 14

D
07

0.6

o«
IS

Fraction Adopted
b
w

53
>

.
N

Time (Days)

0 2 4 6 8 10 12 14

Time (Days)

Adoption/infection probability increases with
the number of neighbors who already
adopted

Builds on the ideas of thresholds and social
reinforcement

Initially studied as a simulation model
(Centola and Macy 2007)

Centola reproduced the results through real-
world experiments
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Complex Contagion
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Fig. S2. Recruitment conversion for demographically homogeneous neighborhoods, as a function of (A) two-node, (B) three-node, and (C) four-node contact
neighborhood graphs. The conversion scale is the same as for Fig. 1 in the main text. Error bars represent 95% confidence intervals.

Ugander et al. 2012

Open questions:

For a focal individual, is a closed or open triad more conducive to social
contagion? (e.g., Facebook adoption study)
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Complex Contagion

Social contagion is an endogenous process:
- Homophily - adoption

- Embeddedness - adoption

- Tie strength - adoption

Similar people form strong ties

Embedded relations tend to be strong ties

Tie strength can potentially increase similarity
Tie strength can generate embedded relations

Result: Difficult to estimate causal effect on adoption
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Summary




