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2-min Quiz, on Canvas
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Quick Recap – Last Thursday’s Lecture
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Graph theory as our basic formalism for modeling networks

Basic building blocks: nodes and links

Most basic structure: dyads

Degree and degree distribution

Paths (shortest paths)

The Breadth-first search algorithm to compute distances

Adjacency matrices as an algebraic representation of networks

Network properties as matrix operations!



More on connectedness and connected components

Random graphs, revisiting Six Degrees of Kevin Bacon

Larger building blocks: from dyads to triads

Plan for Today
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(B Ch. 2.9–2.10, Ch. 3 except 3.9) (K&E Ch. 4) (W&F Ch. 14.1-14.2)



Connectedness
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In a “Connected” Graph, There Is a Path Between Every Pair 
of Nodes
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This example shows two disconnected components. If a network has 
disconnected components, the adjacency matrix (right) can be rearranged 
into a block diagonal form.

(Barabasi, 2016)



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Why?



When a Network Contains a Giant Component, It Almost 
Always Contains Only One
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Imagine there were two giant components in the global friendship network 
example, each with hundreds of millions of people. 

All it would take is a single edge from someone in the first of these components to 
someone in the second, and the two giant components would merge into a single 
component! 

It’s essentially inconceivable that some such edge wouldn’t form, and hence two 
co-existing giant components are almost never seen in real networks.



Note: The adjacency matrix cannot be written in a block diagonal form.

A “Bridge” (2–4) Can Turn a Disconnected Network Into a 
Single Connected Component.

9(Barabasi, 2016)



Recall the BFS Algorithm
Assume we’re starting 
from the orange node, 
labeled “0.”

First, we identify all its 
neighbors, labeling 
them “1”.

10(Barabasi, 2016)



Recall the BFS Algorithm
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Next we label “2” the 
unlabeled neighbors of 
all nodes labeled “1”, and 
so on, in each iteration 
increasing the label 
number, until no node is 
left unlabeled.

(Barabasi, 2016)
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Recall the BFS Algorithm
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Ultimately, the length of 
the shortest path (or the 
distance d0i between 
node 0 and any other 
node i in the network is 
given by the label of node 
i. 

For example, the 
distance between node 0 
and the leftmost node is 
d = 3.

(Barabasi, 2016)



Can We Identify Connected Components Using BFS?

14(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(1) Start from a randomly 
chosen node i and perform a 
BFS. Label all nodes reached 
this way with n = 1.

n = 1

n = 1

n = 1

(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(2) If the total number of labeled 
nodes equals N, then the 
network is connected. 

If the number of labeled nodes 
is smaller than N, the network 
consists of several components.

n = 1

n = 1

n = 1

(Barabasi, 2016)



We Can Identify Connected Components Using BFS!
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(3) Increase the label n → n + 1. 

Choose an unmarked node j, 
label it with n. 

Use BFS to find all nodes 
reachable from j, label them all 
with n. 

Return to step 2.

n = 1

n = 1

n = 1

n = 2

n = 2

n = 2

n = 2

(Barabasi, 2016)



Case Study Scenario

18(Barabasi, 2016)
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Imagine organizing a party for a 
hundred guests who initially do not 
know each other.

You bought a couple of exquisite 
cakes from La Gourmandine, plus 
many fillers from the grocery store.

Your guests don’t know about the 
La Gourmandine gems.
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People come and start chatting, in 
small groups.

Now mention to Mary, one of your 
guests, which cakes came from La 
Gourmandine.

If she shares this info only with her 
acquaintances, your expensive cake 
appears to be safe; she only had 
time to meet a few others so far.

Early on the guests form isolated groups.
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As time goes on, the guests will 
mingle, becoming increasingly 
interwoven by subtle paths between 
them.

How long before you run out of 
premium cake?

As people mingle, changing groups, an invisible network 
emerges that connects everyone into a single network.
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As people mingle, changing groups, an invisible network 
emerges that connects everyone into a single network.

Clearly, after all guests get to know 
each other, everyone would be 
eating the superior cake. 

But if each encounter took only ten 
minutes, meeting all ninety-nine 
others would take ~16h. 

Thus, you could reasonably hope 
that a few pieces of your premium 
cake would be left for you to enjoy 
once the guests are gone.
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As people mingle, changing groups, an invisible network 
emerges that connects everyone into a single network.

What if I told you we don’t have to 
wait until all individuals get to know 
each other for our expensive cake 
to be in danger?

Rather, soon after each person 
meets at least one other guest, an 
invisible network will emerge that 
will allow the information to reach 
all of them. 

Hence in no time everyone will be 
enjoying the better cake!



The Random Network Model
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Three realizations of a random network generated with the same parameters 
p=1/6 and N=12.

A random network consists of N nodes where each node pair is 
connected with probability p
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Aka “Erdős-Rényi network” – from random graph theory (1959–1968)

L=10 L=10 L=8



Three realizations of a random network with p=0.03 and N=100. Several nodes 
have degree k=0, shown as isolated nodes at the bottom.

A random network consists of N nodes where each node pair is 
connected with probability p
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The probability that a random 
network has exactly L links is:

(recall, the second term is the 
max possible number of pairs)

Common question: How many links can we expect for a particular 
realization of a random network with fixed N and p?

27(Barabasi Ch. 3.3)

The average degree of a 
random network is:

(recall, the second term is the 
max possible node degree)



The number of links in a random network varies between realizations. 

Its expected value is determined by N and p. 

If we increase p a random network becomes denser: 

The average number of links increase linearly from <L> = 0 to Lmax 

The average degree of a node increases from <k> = 0 to <k> = N-1.

Common question: How many links can we expect for a particular 
realization of a random network with fixed N and p?

28(Barabasi Ch. 3.3)



The random network model underestimates the size and frequency 
of the high degree nodes, and the number of low degree nodes. 

29

predicted

obs.

(Barabasi Ch. 3.5)



We will come back and improve on this later.
But for now, at least let’s explain why you’ll be out of good cake fast!
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The average degree of a 
random network is:

For p = 0 we have <k> = 0, hence all nodes are 
isolated. Therefore the largest component has 
size NG = 1 and NG/N→0 for large N.

For p = 1 we have <k>= N-1, hence the network is 
a complete graph and all nodes belong to a single 
component. Therefore NG = N and NG/N = 1.

Let’s inspect how the size of the largest connected component 
within the network, NG, varies with <k>

31
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One would expect that the largest component grows gradually from NG = 1 
to NG = N if <k> increases from 0 to N-1. Right?
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One would expect that the largest component grows gradually from NG = 1 
to NG = N if <k> increases from 0 to N-1. Right? Wrong



34(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

Subcritical 
Regime

(no giant component)

Critical 
Point

Supercritical Regime
(single giant component)

Connected 
Regime

(single giant component)



35(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

We have one giant component iff each 
node has on average more than one link.

That we need at least one link per node 
to observe a giant component is not 
unexpected. 

But it is arguably counter-intuitive that 
one link is sufficient for its emergence.

Subcritical 
Regime

(no giant component)

Critical 
Point



36(Barabasi Ch. 3.6; Erdős & Rényi, 1959 )

Subcritical 
Regime

(no giant component)

What’s the average degree <k> in the 
HW1 networks? 

● Is <k> > 1? Implying that they have a 
giant component.

● Is <k> > lnN? Implying that they have a 
single giant component.

(If the average individual in a world 
social network has more than ln(7 ×109) 
≈ 22.7 acquaintances, then a random 
society must have a single component)

Critical 
Point



Most real networks are supercritical
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I.e., expected to be broken into 
numerous isolated components. 

Except for the actor network, 
with a single giant component.



Back to Six Degrees of Kevin Bacon
(Aka the “Small world” phenomenon)

38



Consider a random network with average degree 
<k>. A node in this network has on average:
● How many nodes at distance one (d=1)?

39

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● How many nodes at distance two (d=2)?

40

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● <k>2 nodes at distance two (d=2)

41

Small world property: The distance between any two nodes in a 
network is small.

(Barabasi Ch. 3.8 )



Consider a random network with average degree 
<k>. A node in this network has on average:
● <k> nodes at distance one (d=1)
● <k>2 nodes at distance two (d=2)
● <k>3 nodes at distance three (d =3)

...
● <k>d nodes at distance d

42

Small world property: The distance between any two nodes in a 
network is small.

E.g., if <k> ≈ 1,000 (the estimated number of 
acquaintances an individual has), we expect 106 
individuals at d=2 and about a billion, i.e. almost 
the whole earth’s population, at d=3 from us.

(Barabasi Ch. 3.8 )



“Small” as in proportional to lnN, rather than N (or a power of N)
The dependence of the average distance 
in a random network on N and <k>:

The distances in a random network are 
orders of magnitude smaller than the 
size of the network.

(For our world social network, if N ≈ 7 ×109 
and <k> ≈ 103, we get〈d〉≈ 3.28.)

43



Six degrees: Experimental confirmation

Facebook 2011 network (721M active 
users, 68B symmetric friendship links): 
average distance 4.74 

(Backstrom et al, 2012)

Recall (Milgram, 1967) – the letter 
forwarding study: median 5.2 hops

44



Larger Building Blocks: The Triad
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The Triad
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Random graphs are useful as a 
baseline model

But real-world social networks differ 
from random graphs in an important 
way

They contain more triangles

These triangles, or triads, are the 
telltale sign of social groups Probability of a triangle is close to 0 in random 

graphs



The Triad
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How is a trio different from a duo?

Triad is a group: 

- The smallest objectified social group (“me” and “them”) 
- The other two can pressure an individual to comply
- Can reduce caprice and uncertainty
- Individual fears exclusion and complies 
- Individuality is suppressed and the group is cohesive

Dyad is not a group: 

- Not perceived as a social group
- Variable and capricious
- Individuality and emotion of the 

two dictate the relationship

“each of the two [in a dyad] feels 
himself confronted only by the other, 
not by a collectivity above him” -Georg 
Simmel



The Triad
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Experimental subjects were 
divided into either a 2-person 
exchange or a 3-person 
exchange condition

Positive emotion was more 
important for group cohesion 
in dyads

Predictability of exchange 
partners was more important 
for group cohesion in triads

(Yoon et al, 2013)

PredictabilityPositive emotion

https://www.sciencedirect.com/science/article/pii/S0049089X13000884?via%3Dihub


The Triad
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In short, triads are the 
smallest social group

Our aim is to understand the 
properties of a triad as a 
starting point for 
understanding the network 
properties of larger social 
groups (Yoon et al, 2013)

https://www.sciencedirect.com/science/article/pii/S0049089X13000884?via%3Dihub


Structural Balance: Triads of Friends and Enemies
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One of the earliest models of triads took 
inspiration from psychology

- People try to avoid cognitive 
inconsistencies in their relationships

- This idea was applied to triads and 
developed to structural balance 
theory



Structural Balance: Triads of Friends and Enemies
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Friendships: “+”

Enemy relations: “-”

Structural balance is achieved when 

- A friend of my friend is also my friend
- An enemy of my friend is my enemy  



Structural Balance: Triads of Friends and Enemies
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Triad is unbalanced when it consists 
of an odd number of negative edges 

One negative edge: My two friends 
are enemies

Three negative edges: The enemy of 
my enemy is also my enemy



… to be continued
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Today’s Summary
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Giant components

The random graph model

An explanation for Six Degrees of Kevin Bacon

A teaser for the next smallest building block – triads and their social implications


