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“Central” actors are powerful




Relational view of the individual

So far, we covered dyads and triads as basic building blocks of networks
The relational view has been the overarching theme

- relations between two people?
- relations among three people?

The same relational view applies to the many ways to study the individual
This relational approach sharply contrasts with widely used approaches

- Surveys ask individuals about their attributes, beliefs, and actions
- Majority of statistical models assume that individuals are like disconnected atoms
- Independent, identically distributed variables assumption (IID).



Which node is the most “prominent™?

In contrast, network analysis focuses on the relation and the interdependence among
individuals

Opinions are influenced by network neighbors

Individual’s status and importance comes from their position in the network
Individuals can leverage their position to influence opinions, selectively spread or
block information, and control opportunities

Power that an individual can wield is fundamentally relational

A network position of power and prominence is a “central” position

Power and prominence are multifaceted

Therefore, there can be many ways to measure “centrality”



So many ways to define “centrality”

Centrality

Degree

degree_centrality (G) Compute the degree centrality for nodes.

in_degree_centrality (G) Compute the in-degree centrality for nodes.

out_degree_centrality (G) Compute the out-degree centrality for nodes.

Eigenvector

e 5 ) Compute the eigenvector centrality for the
eigenvector_centrality (G[, max_iter, tol, ...]) h(@
graph 6.

- R N Compute the eigenvector centrality for the
eigenvector_centrality_numpy (G, weight, ...])
graph G.
Compute the Katz centrality for the nodes of

katz_centrality (G[, alpha, beta, max_iter, ...])
the graph G.

katz_centrality_numpy (G, alpha, beta, ...]) Compute the Katz centrality for the graph G.

Closeness

closeness_centrality (G, u, distance, ...]) Compute closeness centrality for nodes.

incremental_closeness_centrality (G, edge[, ...]) Incremental closeness centrality for nodes.

Current Flow Closeness

. Compute current-flow closeness centrality for
current_flow_closeness_centrality (G[, ...]) §
nodes.

n : : . Compute current-flow closeness centrality for
information_centrality (G[, weight, dtype, ...]) "
nodes.

Current Flow Betweenness

Compute current-flow
current_flow_betweenness_centrality (G, ...]) betweenness centrality for
nodes.

Compute current-flow
betweenness centrality for

edges.

edge_current_flow_betweenness_centrality (G)

Compute the approximate
current-flow betweenness
centrality for nodes.

approximate_current_flow_betweenness_centrality (G)

Compute current-flow
betweenness centrality for
subsets of nodes.

current_flow_betweenness_centrality_subset (G, ...)

Compute current-flow
edge_current_flow_betweenness_centrality_subset (G, ..) betweenness centrality for edges
using subsets of nodes.

Communicability Betweenness

Returns subgraph communicability for all pairs

communicability_betweenness_centrality (G) .
of nodes in G.

Group Centrality

Compute the group betweenness centrality for a

group_betweenness_centrality (G, C[, ...])
group of nodes.

(Shortest Path) Betweenness

’ ) Compute the shortest-path betweenness
betweenness_centrality (G[, k, normalized, ...]) 5
centrality for nodes.

Compute the group closeness centrality for a

group_closeness_centrality (G, S[, weight])
group of nodes.

. Compute betweenness centrality for a
betweenness_centrality_subset (G, sources, ...)
subset of nodes.

edge_betweenness_centrality (G[, k, ...]) Compute betweenness centrality for edges.

Compute the group degree centrality for a grouj
group_degree_centrality (G, S) B Sroupiessl 4 SIouR
of nodes.
Compute the group in-degree centrality for a

group_in_degree_centrality (G, S)
group of nodes.

edge_betweenness_centrality_subset (G, ...

L1

Compute betweenness centrality for edges
for a subset of nodes.

Compute the group out-degree centrality for a

group_out_degree_centrality (G, S)
group of nodes.

prominent_group (G, k[, weight, C, ...]) Find the prominent group of size k in graph G.

Load

load_centrality (G[, v, cutoff, normalized, ...]) Compute load centrality for nodes.

edge_load_centrality (G[, cutoff]) Compute edge load.

Subgraph

subgraph_centrality (G) Returns subgraph centrality for each node in G.

subgraph_centrality_exp (G) Returns the subgraph centrality for each node of G.

estrada_index (G) Returns the Estrada index of a the graph G.

Harmonic Centrality

harmonic_centrality (G[, nbunch, distance, ...]) Compute harmonic centrality for nodes.

Dispersion

dispersion (G[, u, v, normalized, alpha, b, c]) Calculate dispersion between u and v in G.

Reaching

Returns the local reaching centrality of a node in

local_reaching_centrality (G, v[, paths, ... 5
adirected graph.

Returns the global reaching centrality of a

global_reaching_centrality (G[, weight, ...] 5
directed graph.

Percolation

percolation_centrality (G[, attribute, ...]) Compute the percolation centrality for nodes.

Second Order Centrality

second_order_centrality (G) Compute the second order centrality for nodes of G.

Trophic

trophic_levels (G[, weight])

trophic_differences (G[, weight])

trophic_incoherence_parameter (G[, weigh

VoteRank

Select :
voterank (G[, number_of_nodes])

Laplacian

laplacian_centrality (G[, normalized, ...])




So many ways to define “centrality”

We will cover the four most widely used centrality measures in network analysis

- Degree centrality

- Closeness centrality

- Betweenness centrality
- Eigenvector centrality



Degree Centrality

Insight: Central nodes have many connections
The number of ties of a node, normalized by network
size (g-1).

k;
g-—1

Cp(D) =

Normalization allows for comparison across different
networks

One of the most basic and fundamental quantities in
network science

Having many connections means highly visible and in
an advantageous position to exchange a broad range
of information



Degree Centrality

Degree centrality was, by far, the most popular measure up to the early 2000s

1980 - 2000 ~ English (2019) ~ Case-Insensitive Smoothing of 2 1 9 8 0-20 0 0

0.000000500% -

0.000000450%
degree centrality

0.000000400 % -
0.000000350%
0.000000300% ~ betweenness centrality
ooooooooooooo
0.000000200%
closeness centrality
0.000000150% -
0.000000100%

0000000000000 eigenvector centrality




Degree Centrality

However, its prominence arguably diminished in the past two decades
Why?

2001 - 2019 ~ English (2019) ~ Case-Insensitive Smoothing of 2 + 20 0 'I _20 1 9

0.0000110%

0.0000100% -
betweenness centrality

0.0000090% -

0.0000080%

0.0000070% ~ degree centrality
0.0000060%

0.0000050% ~

0.0000040% ?
closeness centrality

eigenvector centrality
0.0000030% -

0.0000020%

0.0000010% pagerank

0.0000000% T T T T T T T T
2002 2004 2006 2008 2010 2012 2014 2016 2018
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Degree Centrality

However, its prominence arguably diminished in the past two decades
Why?
In large-scale networks (post-2000s), degree centrality becomes a “local” measure

2001 - 2019 ~ English (2019) ~ Case-Insensitive Smoothing of 2 + 20 0 'I _20 1 9

0.0000110% -

0.0000100% -
betweenness centrality

. / s
/ Clogenes el

eigenvector centrality
T T
2016 2018

0.0000090% ~

0.0000080% -
0.0000070% —
0.0000060%

0.0000050% ~
0.0000040% -
0.0000030% ~

0.0000020% -

0.0000010% ——/ \ \
/ t \ .

— R SR
T T
2002 2004

pagerank

0.



Closeness Centrality

United States of America

l N,

4

Centroid of the U.S.

Insight: The position that minimizes the distance to
all other positions is the most central
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Closeness Centrality

o

Telephone game

Insight: The position that minimizes the distance to
all other positions is the most central

Application:

- Systems where traversing the network is costly
- A system where information attrition rate is
high

— The node closest to all other nodes can obtain
more accurate messages

— A source of power

13



Closeness Centrality

Central nodes have short paths to other nodes

Calculated as the reciprocal of the sum of pairwise
distances

9
C(i) = ) dG@ I
j=1

Normalized by size of network

/

9
C() = (g = DL )™
j=1

A global measure that uses information from the
entire network
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Betweenness Gentrality

Number of shortest paths node is on

B(‘[S] 0 B(‘[o] 6 BC[3) =3

Node is central if it sits on many shortest paths

Nodes positioned in Information bottleneck are
central

Those nodes have more control over the distribution
of information and other resources
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Betweenness Gentrality

Number of shortest paths node is on

B(‘[S] 0 13('[] 6 BC[3) =3

Node i's betweenness is the sum of the probabilities
that i is on the shortest paths of all node pairs in the
network

Cp (i) = z PL(i,j, k)/PL(j, k)
i<k

PL(ij,k) — Number of shortest paths involving i

PL(j,k) — Number of shortest paths between j and k
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Betweenness Gentrality

Cp (i) = z PL(i,j, k)/PL(j, k)

<k

B(‘[S] 0 B(‘[] 6 BC[3) =3

Maximum probability PL(ij,k) = PL(jk) = 1 is when i
sits on every shortest path between j and k.

Then, the theoretical maximum C(i) is when i sits on
every shortest path for every pair of nodes
(excluding i)

Q: What is the number of node pairs (dyads)
excluding i in a graph with g nodes?
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Betweenness Gentrality

Cp (i) = z PL(i,j, k)/PL(j, k)

<k

B(‘[S] 0 B(‘[] 6 BC[3) =3

Maximum probability PL(ij,k) = PL(jk) = 1 is when i
sits on every shortest path between j and k.

Then, the theoretical maximum C(i) is when i sits on
every shortest path for every pair of nodes
(excluding i)

— Normalize by the total number of node pairs
excluding i — (g-1)(g-2)/2
Cp(i)
[(g — (g —2)
2

CB,(i) =
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Eigenvector Centrality

Eigenvector Centrality

0.32031738126868514
0.3468185782928418
B 0.5125315779202242

B 0

Who is more central?

— Someone who knows five (well connected) celebrities vs. someone
who knows five ordinary people

Eigenvector centrality quantifies this insight

—O0ne's Eigenvector centrality is determined by the neighbors’
eigenvector centrality, which in turn are determined by their neighbors’
eigenvector centrality ...

v

(62.5%)
(18.75%)
(12.5%)
(6.25%)
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Eigenvector Centrality

Who is more central?

— Someone who knows five (well connected) celebrities vs. someone
who knows five ordinary people

Eigenvector centrality quantifies this intuition

—O0ne's Eigenvector centrality is determined by the neighbors’
eigenvector centrality, which in turn are determined by their neighbors’
eigenvector centrality ...

Red node has two (purple) friends who are themselves highly

: connected
Eigenvector Centrality v
e i — Highest Eigenvector centrality
0.3468185782928418 (18.75%)
B 0.5125315779202242 (12.5%)
W o (6.25%)

Pink nodes have lower degree centrality than the blue nodes, but they
are connected to the red node

— pink > blue



Eigenvector Centrality

Given an adjacency matrix A, eigenvector centrality of node i is:

- i's weighted degree where each of i's edge is weighted by the degree of the neighbor, j
ACs (1) = ) Ay C5 ()
J

Given adjacency matrix A, compute the eigenvector x corresponding to the principal
eigenvalue A* of A

Each element in x is the eigenvector centrality value of the corresponding node

21



Eigenvector Centrality

For adjacency matrix A:
/Eigenvector centrality of the nodes are

vi "0 1 1 17 X1 =/1;(x2+x3+ X4)
1 00 0 % = 3(x1)
1 000 X3 = %(x1)
v2 v3 v4 u 1 000 =l

1
x4 = =(x4)
2



Eigenvector Centrality

Axq = (x2% x3% x4)

).Xz = X1
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Eigenvector Centrality

Axq = (x2% x3+ x4)

AXZ = X1

/1X'3 = X1

i
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o
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I 1
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vi

v4

v3

v2
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Eigenvector Centrality

X1 0 1 1 17[*1
X2 1 0 0 O0]|*2 _
’1x3=1000x3] Ax = Ax
- - X4 1 0 0 O0llXa
v 0 1 1 1
1 000 Characteristic equation for matrix A is:
1 0 00
2 w ow L1 00 0] e _3p2-322-3)=90

Eigenvalues are -v3, 0, 0, v3
Principal eigenvalue A* = v3
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Eigenvector Centrality

X1 0 1 1 111*1
X2 |1 0 0 0]]xX2 3
AMas| =11 0 0 oflxs| — AX=AX
= - X4 1 0 0 0]l*s
A 0111
1 0 0 0
H . . . *=
1 0 0 O Find the principal eigenvector for A* = v3
e wow L1000
(A-V31)x=0
x=[v3,1,1, 1]

v1 has highest eigenvector centrality, v3

v2,v3,v4 =1



Eigenvector Centrality

|

|

- O O O

- O O O

- O O O

O r v

vi

v2 v3

v4
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Eigenvector Centrality

Google’s original PageRank algorithm ranks web pages using a variant of eigenvector centrality

- A node’s PageRank is a function of the PageRank of its in-neighbors
- Normalize the eigenvector centrality of the in-neighbor nodes with their outdegree

lambda

PageRank of w
Node w's in-link Node v's outdegree
neighbors

28



Eigenvector Centrality

Google’s original PageRank algorithm ranks web pages using a variant of eigenvector centrality

- A node’s PageRank is a function of the PageRank of its in-link neighbors
- Normalize the eigenvector centrality of the in-link neighbors with their outdegrees

- Why?

lambda

PageRank of w
Node w's in-link Node v's outdegree
neighbors

29



Similarities among Centrality Measures

Average correlations between centrality measures (N=58).

Pearson correlation

1 2 3 4 5 6 7 8 9 10 11
1 | Indegree
2 | Outdegree 0.3
3 | Degree 0.78 0.71
4 | Between 0.62 0.54 0.7
5| S-Between 069 05| o857 o067
6 | Closeness-In 0.55 0.16 0.45 0.37 0.31
7 | Closeness-Out 0.18 0.81 0.56 0.39 0.38 0.02
8 | S-Closeness 0.4 0.64 0.66 0.37 0.44 0.42 0.65
9 | Integration 0.7 0.26 0.58 0.5 0.41 0.9 0.15 0.51
10 | Radiality 0.21 0.86 0.61 0.42 0.41 0.06 0.98 0.67 0.19
11 | S-Int/Rad 0.45 0.7 0.73 043 0.5 0.44 0.69 0.99 0.54 0.72
12 | Eigenvector 0.71 0.69 0.92 0.64 0.72 0.44 0.55 0.63 0.57 0.59 0.71
Average 0.51 0.56 0.69 0.52 0.53 0.37 0.49 0.58 0.48 0.52 0.63 0.65
Standard Deviation 0.21 0.23 0.14 0.16 0.14 0.27 0.22 0.25 0.28 0.17 0.12 0.12

Valente et al. 2008
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875682/

Similarities among Centrality Measures

Sometimes, the relationship is non-linear — lower linear correlation (Pearson)

- Example: Closeness centrality and the log of degree centrality are highly correlated

- If such a strong relationship, why do we care about computationally expensive closeness

(redundant)
centrality?
Closeness centrality (inverse)
(a) ER
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https://www.nature.com/articles/s42005-022-00949-5

Similar, but also different

) Different centrality measures
capture different intuitions

In a graph, the node with highest
degree is not necessarily the node
with the highest betweenness or
closeness

Degree v ClosenessCentrality BetweennessCentrality
| 7 | 0.45454545 0.29047619
5 | 0.51724138 | 0.42380952
4 0.48387097 [ 0.4952381 |
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Summary

Centrality as a general term for measuring a
node’s position of “prominence” in the network

Degree: sheer connections
Closeness: shortest path distance

Betweenness: node’s presence in shortest paths

Eigenvector: degree weighted by the degree of
the neighbors

These measures are highly correlated, but
conceptually distinct




