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2-min Quiz, on Canvas
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“Central” actors are powerful
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Relational view of the individual
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So far, we covered dyads and triads as basic building blocks of networks

The relational view has been the overarching theme

- relations between two people?
- relations among three people?

The same relational view applies to the many ways to study the individual 

This relational approach sharply contrasts with widely used approaches

- Surveys ask individuals about their attributes, beliefs, and actions
- Majority of statistical models assume that individuals are like disconnected atoms 

- Independent, identically distributed variables assumption (IID).



Which node is the most “prominent”?
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In contrast, network analysis focuses on the relation and the interdependence among 
individuals

- Opinions are influenced by network neighbors
- Individual’s status and importance comes from their position in the network
- Individuals can leverage their position to influence opinions, selectively spread or 

block information, and control opportunities
- Power that an individual can wield is fundamentally relational 

A network position of power and prominence is a “central” position

- Power and prominence are multifaceted
- Therefore, there can be many ways to measure “centrality”



So many ways to define “centrality”
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…



So many ways to define “centrality”
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We will cover the four most widely used centrality measures in network analysis

- Degree centrality
- Closeness centrality
- Betweenness centrality
- Eigenvector centrality



Degree Centrality
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Insight: Central nodes have many connections

The number of ties of a node, normalized by network 
size (g-1). 

Normalization allows for comparison across different 
networks

One of the most basic and fundamental quantities in 
network science 

Having many connections means highly visible and in 
an advantageous position to exchange a broad range 
of information



Degree Centrality
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Degree centrality was, by far, the most popular measure up to the early 2000s 

1980-2000



Degree Centrality
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However, its prominence arguably diminished in the past two decades

Why?

2001-2019



Degree Centrality

11

However, its prominence arguably diminished in the past two decades

Why?

In large-scale networks (post-2000s), degree centrality becomes a “local” measure  

2001-2019



Closeness Centrality
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Insight: The position that minimizes the distance to 
all other positions is the most central

Centroid of the U.S.



Closeness Centrality
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Insight: The position that minimizes the distance to 
all other positions is the most central

Application:

- Systems where traversing the network is costly
- A system where information attrition rate is 

high

→ The node closest to all other nodes can obtain 
more accurate messages

→ A source of power

Telephone game



Closeness Centrality
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Central nodes have short paths to other nodes

Calculated as the reciprocal of the sum of pairwise 
distances 

A global measure that uses information from the 
entire network

Normalized by size of network



Betweenness Centrality
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Node is central if it sits on many shortest paths

Nodes positioned in Information bottleneck are 
central

Those nodes have more control over the distribution 
of information and other resources

Number of shortest paths node is on



Betweenness Centrality
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Node i’s betweenness is the sum of the probabilities 
that i is on the shortest paths of all node pairs in the 
network

PL(i,j,k) → Number of shortest paths involving i

PL(j,k) → Number of shortest paths between j and k

Number of shortest paths node is on



Maximum probability PL(i,j,k) = PL(j,k) = 1 is when i 
sits on every shortest path between j and k.

Then, the theoretical maximum C(i) is when i sits on 
every shortest path for every pair of nodes 
(excluding i)

Q: What is the number of node pairs (dyads) 
excluding i in a graph with g nodes?

Betweenness Centrality
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0.1



Maximum probability PL(i,j,k) = PL(j,k) = 1 is when i 
sits on every shortest path between j and k.

Then, the theoretical maximum C(i) is when i sits on 
every shortest path for every pair of nodes 
(excluding i)

→ Normalize by the total number of node pairs 
excluding i  → (g-1)(g-2)/2

Betweenness Centrality
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0.1



Who is more central?

→ Someone who knows five (well connected) celebrities vs. someone 
who knows five ordinary people

Eigenvector centrality quantifies this insight

→One’s Eigenvector centrality is determined by the neighbors’ 
eigenvector centrality, which in turn are determined by their neighbors’ 
eigenvector centrality … 

Eigenvector Centrality
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Who is more central?

→ Someone who knows five (well connected) celebrities vs. someone 
who knows five ordinary people

Eigenvector centrality quantifies this intuition

→One’s Eigenvector centrality is determined by the neighbors’ 
eigenvector centrality, which in turn are determined by their neighbors’ 
eigenvector centrality … 

Red node has two (purple) friends who are themselves highly 
connected 

→ Highest Eigenvector centrality

Pink nodes have lower degree centrality than the blue nodes, but they 
are connected to the red node

→ pink > blue

Eigenvector Centrality
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Eigenvector Centrality
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Given an adjacency matrix A, eigenvector centrality of node i is:

-  i’s weighted degree where each of i’s edge is weighted by the degree of the neighbor, j

Given adjacency matrix A, compute the eigenvector x corresponding to the principal 
eigenvalue λ* of A

Each element in x is the eigenvector centrality value of the corresponding node



Eigenvector Centrality
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For adjacency matrix A:
Eigenvector centrality of the nodes are



Eigenvector Centrality
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Eigenvector Centrality
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Eigenvector Centrality
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Characteristic equation for matrix A is:

Eigenvalues are -√3, 0, 0, √3
Principal eigenvalue λ* = √3  



Eigenvector Centrality
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Find the principal eigenvector for λ* = √3

Ax-λx=0
(A-√3I)x=0

x=[√3, 1, 1, 1]

v1 has highest eigenvector centrality, √3

v2, v3, v4 = 1



Eigenvector Centrality
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Eigenvector Centrality
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Google’s original PageRank algorithm ranks web pages using a variant of eigenvector centrality

- A node’s PageRank is a function of the PageRank of its in-neighbors
- Normalize the eigenvector centrality of the in-neighbor nodes with their outdegree 

lambda

Node w’s in-link 
neighbors

Node v’s outdegree
PageRank of w



Eigenvector Centrality

29

Google’s original PageRank algorithm ranks web pages using a variant of eigenvector centrality

- A node’s PageRank is a function of the PageRank of its in-link neighbors
- Normalize the eigenvector centrality of the in-link neighbors with their outdegrees 

- Why?

PageRank of w

lambda

Node w’s in-link 
neighbors

Node v’s outdegree



Similarities among Centrality Measures
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Pearson correlation

Valente et al. 2008

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875682/


Similarities among Centrality Measures
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Sometimes, the relationship is non-linear → lower linear correlation (Pearson)

- Example: Closeness centrality and the log of degree centrality are highly correlated 
(redundant)

- If such a strong relationship, why do we care about computationally expensive closeness 
centrality?

Evans and Chen 2022

Closeness centrality (inverse)

https://www.nature.com/articles/s42005-022-00949-5


Different centrality measures 
capture different intuitions

In a graph, the node with highest 
degree is not necessarily the node 
with the highest betweenness or 
closeness

Similar, but also different
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Centrality as a general term for measuring a 
node’s position of “prominence” in the network

Degree: sheer connections

Closeness: shortest path distance
 
Betweenness: node’s presence in shortest paths

Eigenvector: degree weighted by the degree of 
the neighbors

These measures are highly correlated, but 
conceptually distinct

Summary
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