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2-min Quiz, on Canvas
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Carefully examine assumptions of network measures: 
- Centrality metrics do not accurately predict “power” in negatively connected 

exchange networks (zero-sum)

Make the hidden assumptions explicit:
- Bonacich power centrality explicates the assumption with the beta parameter
- Better prediction of power use in experimental data (higher resource gains)

Further creative extensions:
- Building on the eigenvector-like centrality measure
- Insight: Fragility of neighbors increases my fragility
- Used Herfindahl index of concentration instead of node degree

Quick Recap – Last Tuesday’s Lecture
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Social networks are full of easy to spot 
“communities” (cohesive subgroups)
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Twitter users
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Retweet network of political 
hashtags on Twitter prior to 
the 2010 US election.  

(Menczer et al, 2020)



Twitter users
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Bidirected @mention network 
among Singapore Twitter 
users 

Colors based on community 
detection

Q: What attribute do you think 
the colors correspond to?

(Patrick Park, unpublished)



Belgian mobile phone users
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The nodes correspond to 
communities. 

The color represents the language 
spoken in the particular 
community: red for French and 
green for Dutch. 

Bridge communities (Brussels) 
show less obvious language 
separation.

(Blondel et al, 2008)



Subgroups: easy to spot, but tricky to define
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Social group is fundamental to humans

Yet a “group” lacks formal definition 

- Too “obvious” to define
- But what is a group?

They come in all size, shapes, and forms

- Size (family, nation state)
- Intimacy (private vs. professional)
- Language
- Geography
- Means of production (capitalist vs. proletariat)
- …



Subgroups: easy to spot, but tricky to define
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The difficulty is apparent when you try to 
define groups top-down

- University C, Department X, Unit Z
- Member overlap: Department X and Y can 

share common members
- Informal groups: Some members in X 

have stronger ties to members in Y

Actual cohesion does not always form along 
formal groups 



Subgroups: easy to spot, but tricky to define
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The network approach develops Bottom-up 
approach to quantifying subgroups based on:

- Direct connections:
- Clique: maximal subset of nodes with direct ties to 

one another



Subgroups: easy to spot, but tricky to define
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2-clan: {2, 3, 4, 5, 6}
The network approach develops Bottom-up 
approach to quantifying subgroups based on:

- Direct connections:
- Clique: maximal subset of nodes with direct ties to 

one another
- Distance:

- n-clan: Maximal subgraph of nodes that are within 
a path length n only through the nodes in that 
subset



Subgroups: easy to spot, but tricky to define
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k-core

The network approach develops Bottom-up 
approach to quantifying subgroups based on:

- Direct connections:
- Clique: maximal subset of nodes with direct ties to 

one another
- Distance:

- n-clan: Maximal subgraph of nodes that are within 
a path length n only through the nodes in that 
subset

- Redundancy (many ways to reach others):
- k-core: Maximal subgraph in which every node has 

edges to at least k other nodes in the subgraph



Subgroups: easy to spot, but tricky to define

13

The network approach develops Bottom-up 
approach to quantifying subgroups based on:

- Direct connections:
- Clique: maximal subset of nodes with direct ties to 

one another
- Distance:

- n-clan: Maximal subgraph of nodes that are within 
a path length n only through the nodes in that 
subset

- Redundancy (many ways to reach others):
- k-core: Maximal subgraph in which every node has 

edges to at least k other nodes in the subgraph
- k-component: Every node has at least k 

non-overlapping paths to every node in the 
subgraph

k-components



Basic concepts
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Internal links (black links)

Internal (black links) & external (blue 
links) degree of a node in the 
community (green nodes)

Community degree (sum of num 
neighbors of each internal node)



Recall
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The maximum number of links in an 
undirected network with N nodes:

?

The density of a network with N 
nodes and L links:

?



Recall
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The maximum number of links in an 
undirected network with N nodes:

The density of a network with N 
nodes and L links:



Internal link density:

Basic concepts

17



Intuition: Nodes within a “community” have higher likelihood of 
connecting to each other than to nodes from other “communities.” 

→ high “cohesion,” high “separation”
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Aside: Cliques have high cohesion, but aren’t realistic communities

19

Real communities aren’t as dense as 
cliques.

In real communities some nodes are 
more important than others.

Better: The number of internal links 
should be larger than the number of 
external links.



“Strong” vs “weak” communities

The internal degree of each node 
exceeds its external degree towards 
other communities.
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Strong Weak
The sum of internal degrees of all nodes 
exceeds the sum of their external degrees 
in other communities.

strong → weak



The communities in many real-world networks overlap
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Partitions can be hierarchical when the network has 
multiple levels of organization
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So, how to find the communities?
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1. Graph partitioning – old problem 
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(Also need to specify size of each cluster beforehand. Example: one leaf vs 
all other nodes)

Min-cut graph bisection doesn’t quite work
Trivial solution to minimizing cut size: 
single cluster containing the entire 
network gives cut size of zero.

→ Need to specify the number of 
clusters beforehand.
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Kernighan-Lin graph bisection algorithm
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Kernighan-Lin graph bisection algorithm
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Greedy, risks getting stuck 
in local optima.



Not bad, but we can do better. 
Clusters identified via network partitioning are well-separated but 
not necessarily cohesive. 
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2. Clustering – also old problem
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The main ingredient is a similarity measure between nodes
A classic example is structural equivalence, which expresses the similarity 
between the neighborhoods of a pair of nodes.
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Given a node similarity measure S and two groups of nodes G1 and G2:

We also need to define similarity for groups of nodes
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Next we can apply agglomerative hierarchical clustering
Start from the trivial partition into N groups. At each step, merge the pair of groups 
with the largest similarity. Repeat until all nodes are in the same group.
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Zachary’s karate club network. 
Node 0: instructor. Node 33: club president



Next we can apply agglomerative hierarchical clustering
Start from the trivial partition into N groups. At each step, merge the pair of groups 
with the largest similarity. Repeat until all nodes are in the same group.

Complexity:

● We need to compare N2 node pairs to compute pairwise similarity.
● Group similarity requires us to determine in each step the distance of the new 

cluster to all other clusters. Doing this N times requires 0(N2) calculations.
● The construction of the dendrogram can be performed in 0(NlogN) steps.
● Total 0(N2).
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As many partitions as there are nodes → Unclear which partition is 
meaningful for the given network. Plus, rather slow.
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3. Community detection
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3.1. Bridge removal
Key idea: Find links with high betweenness and remove them.

Link betweenness defined similarly to node betweenness centrality in previous 
lecture – fraction of shortest paths that run through that link.

Link betweenness should be higher for bridges than for links inside a cluster.
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Example calculating link betweenness
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Inter-community links, like the central 
link in the figure with xij=0.57, have 
large betweenness. 

The calculation of link betweenness 
scales as 0(LN), or 0(N2) for a sparse 
network.



Girvan-Newman algorithm (similar to hierarchical clustering)
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Girvan-Newman algorithm on Zachary’s karate club: 2 clusters
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(subjective / expert interpretation)



Girvan-Newman algorithm - reflections
Slow – must recompute the betweenness of all links each iteration.

● Step 2 introduces an additional factor L in the running time, hence the 
algorithm scales as 0(L2N), or 0(N3) for a sparse network.

Improvement: recompute betweenness only within the connected component 
including the last removed link.
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We still need a measure of the quality of a partition.
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Modularity
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The difference between the number of links internal to all clusters and the 
expected equivalent number in a randomized network.

Randomization strategy: maintain number of 
nodes and degree sequence, shuffle links.



Modularity
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Left network: visible community 
structure (high modularity).

Right network: degree-preserving 
randomization – fewer internal links 
and more links between the subnets.



Modularity
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The modularity of a partition in an undirected, unweighted network: 

Lc is the number of internal links in cluster C, kc is the total degree of nodes in C.

kc (total num stubs attached to nodes in C) stays constant in each randomization, 
by construction.

The probability of selecting one of these stubs at random is: 

The probability of picking a pair of stubs from C at random is: 



The modularity of a partition in an undirected, unweighted network: 

What happens when there is a single cluster?

Can Q ≥ 1?

Can Q < 0?

Modularity
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The modularity of a partition in an undirected, unweighted network: 

What happens when there is a single cluster? → Q = 0 (LC=L, kC=2L)

Can Q ≥ 1? → No (Qmax =    )

Can Q < 0? → Yes (partition into N singletons: LC=0)

Modularity
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The higher the modularity for a partition, the better the 
corresponding community structure
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Use modularity to decide which partition predicted by a 
hierarchical method offers the best community structure
Select the one 
for which M is 
maximal!

48



Largest modularity value in Zachary’s Karate Club: five clusters
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1. Assign each node to a community of its own, starting with N communities of 
single nodes.

2. Inspect each community pair connected by at least one link and compute the 
modularity difference ΔM obtained if we merge them. Identify the community pair 
for which ΔM is the largest and merge them. Note that modularity is always 
calculated for the full network.

3. Repeat Step 2 until all nodes merge into a single community, recording M for 
each step.

4. Select the partition for which M is maximal.

3.2. Modularity optimization - Greedy algorithm
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Clustering physicists using the greedy algorithm
(a) The greedy algorithm predicts four large communities, each composed 
primarily of physicists of similar interest.
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Clustering physicists using the greedy algorithm
(b) We can identify subcommunities by applying the greedy algorithm to each 
community, treating them as separate networks.
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(c) One of these smaller communities is further partitioned, revealing individual 
researchers and the research groups they belong to.

Clustering physicists using the greedy algorithm
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Since the algorithm requires 
N–1 community mergers, its 
complexity is O[(L + N)N], or 
O(N2) on a sparse graph. 

The calculation of each ΔM can be done in constant time → Step 2 takes O(L) 
computations. 

After deciding which communities to merge, the update of the matrix can be done 
in a worst-case time O(N).

Complexity analysis of the greedy algorithm
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The Louvain algorithm
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Step I: Modularity is 
optimized by local 
changes. 

Choose a node (e.g., 
0) and calculate the 
change in modularity 
if the node joins the 
community of its 
immediate neighbors. 

→ Node 0 will join 
node 3.

Repeat for each node.



Step II: Aggregate the 
communities in Step I 
by merging nodes 
belonging to the same 
community into a 
single supernode. 

This process will 
generate self-loops, 
corresponding to links 
between nodes in the 
same community that 
are now merged into a 
single node.

The Louvain algorithm
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The sum of Steps I 
& II is called a pass. 

The network 
obtained after each 
pass is processed 
again (Pass 2), until 
no further increase 
of modularity is 
possible.

The Louvain algorithm
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Pass 1 is the most time 
consuming: The number 
of computations scale 
linearly with L.

With subsequent 
passes over a 
decreasing number of 
nodes and links, the 
complexity of the 
algorithm is at most 
O(L). 

It therefore allows us to 
identify communities in 
networks with millions 
of nodes.

The Louvain algorithm
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Still greedy. And result depends on the order in which the nodes are 
visited. But fast → very commonly used in practice.
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More later
3.3. Label propagation

3.4. Stochastic block modeling
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Communities play a key role in the 
structure and function of networks.

But communities are not well-defined 
objects.

Network partitioning searches for 
well-separated subnetworks.

Hierarchical clustering groups nodes 
based on their similarity. Biggest 
drawback: lack of criterion for 
selecting meaningful partitions.

Bridge removal (same drawback). 

Modularity optimization (Louvain) 
widely used in practice.

Summary
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Big limitation so far: A node rarely belongs to a single community!
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The network of characters in Victor 
Hugo’s 1862 novel Les Miserables.

The multiple 
meanings of “bright”


