Network Analysis:

The Hidden Structures behind the Webs We Weave 17-213 / 17-668

Structural Equivalence

Tuesday, October 3, 2023

Patrick Park & Bogdan Vasilescu

2-min Quiz, on Canvas

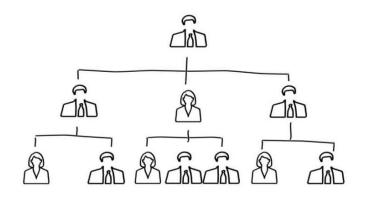
Quick Recap – Last Thursday's Lecture

Big question: What is a social group?

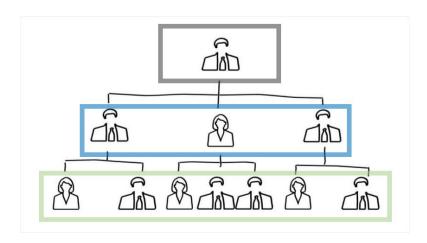
Criteria: How close or reachable are people? The focus underlying this way of approaching the question of groups is asking how two people are related through some notion of "distance"

Distance: How close is i to j?

- Attraction: i and j are brought closer by more ties around them (closure)
- Repulsion: i and j are pushed farther apart if their other neighbors are farther apart (fewer links between lumps of nodes) → Modularity, betweenness, etc.

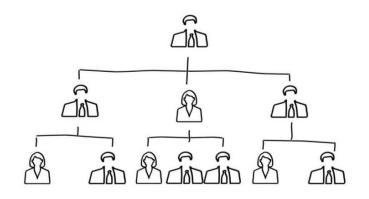


Position: Individuals who are similarly embedded in networks of relations

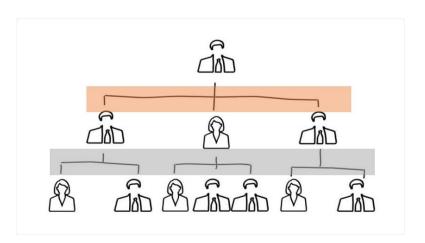


Position: Individuals who are **similarly** embedded in networks of relations

Similar relational pattern **does not** imply direct connection

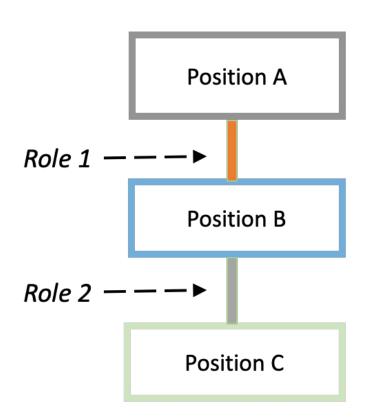


Role: Patterns of relations between positions



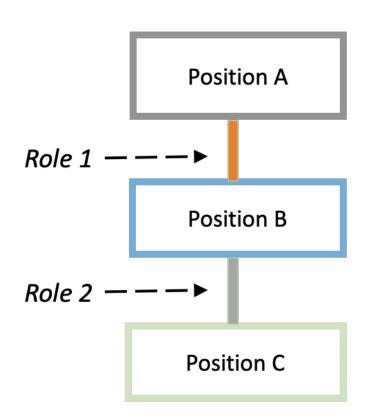
Role: Patterns of relations between positions

Not just one relation between two positions, but the totality of relations in a network



Positional analysis aims to simplify the data into positions and roles

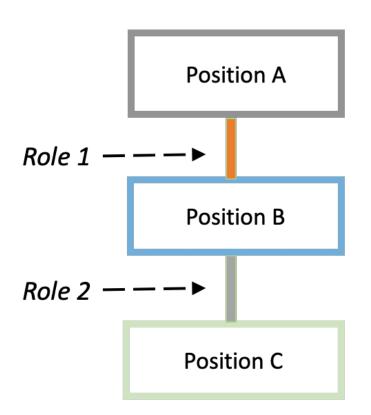
Example: People in Position A have *Role 1* in relation to Position B



In the analysis of positions and roles, each position is a node and each role is a tie

Aim: Simplification/data reduction of the network

Block model is one method of data simplification into roles and positions



1. Decide definition of "equivalence" that will be used to group nodes into same position

 Since real networks often do not perfectly fit the formal definition of equivalence, measure the degree to which subset of nodes approach the definition

Represent the equivalence classes and equivalence relations

4. Assess adequacy

Different Definitions of Equivalence

Stringent

Structural Equivalence

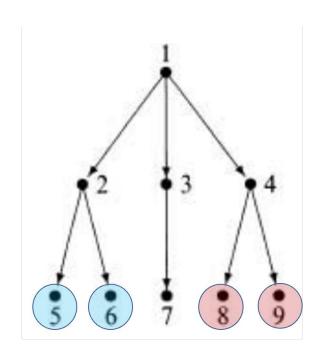
Automorphic Equivalence

Isomorphic Equivalence

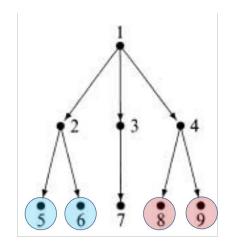
Regular Equivalence

. .

General



Nodes that have incoming and outgoing ties to the same set of other nodes on all relationship types



	2	5	6
2	0	1	1
5	0	0	0
6	0	0	0

In an adjacency matrix, structural equivalence means two nodes have the exact same row and column values

Example: 5 and 6 share exact same column vectors

→ incoming ties from same node

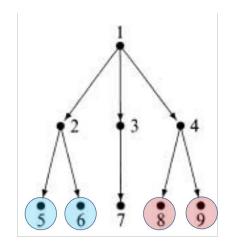


	2	5	6
2	0	1	1
5	0	0	0
6	0	0	0

In an adjacency matrix, structural equivalence means two nodes have the exact same row and column values

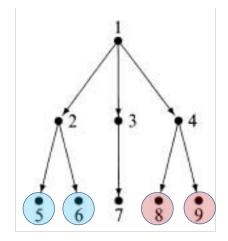
Example: 5 and 6 share exact same row vectors

→ outgoing ties to same node(s)



	2	5	6
2	0	200	200
5	0	0	0
6	0	0	0

If network is weighted, edge weights must be identical as well for two nodes to be structurally equivalent

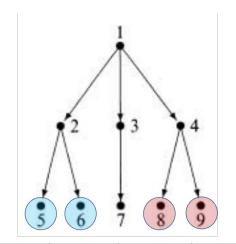


	2	5	6
2	0	200	200
5	0	0	0
6	0	0	0

In reality, nodes that satisfy these conditions are rare

Alternative: How close do these nodes approach the formal definition of structural equivalence?

→ Measured by Euclidean Distance or Correlation

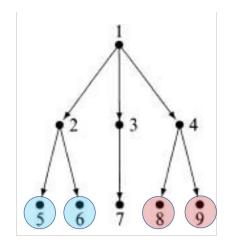


	2	5	6
2	0	200	200
5	0	0	0
6	0	0	0

Euclidean distance

$$d_{ij} = \sqrt{\sum_{k=1}^{g} \left[(x_{ik} - x_{jk})^2 + (x_{ki} - x_{kj})^2 \right]}$$

Nodes 5 and 6 have 0 distance Perfectly structurally equivalent

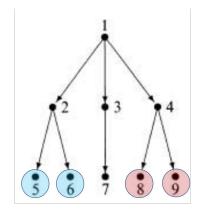


	2	5	6
2	0	200	200
5	0	0	0
6	0	0	0

Euclidean distance

$$d_{ij} = \sqrt{\sum_{r=1}^{R} \sum_{k=1}^{g} \left[(x_{ikr} - x_{jkr})^2 + (x_{kir} - x_{kjr})^2 \right]}$$

Measurable across a set, *R*, of multiple relations (e.g., R={mentor, friendship, department}



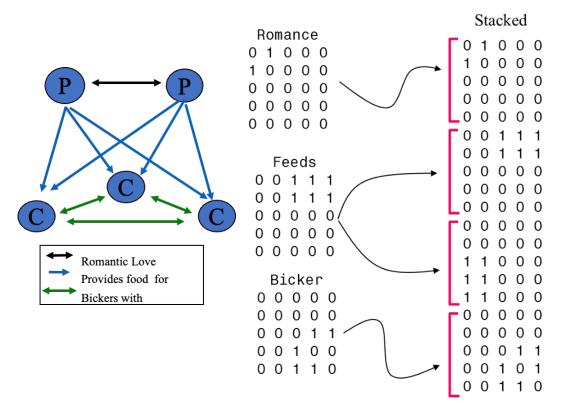
	2	5	6
2	0	200	200
5	0	0	0
6	0	0	0

Pearson correlation coefficient

$$r_{ij} = \frac{\sum (x_{ki} - \overline{x_{\cdot l}})(x_{kj} - \overline{x_{\cdot j}}) + \sum (x_{ik} - \overline{x_{i \cdot l}})(x_{jk} - \overline{x_{j \cdot l}})}{\sqrt{\sum (x_{ki} - \overline{x_{\cdot l}})^2 + \sum (x_{ik} - \overline{x_{i \cdot l}})^2} \sqrt{\sum (x_{kj} - \overline{x_{\cdot j}})^2 + \sum (x_{jk} - \overline{x_{j \cdot l}})^2}}$$

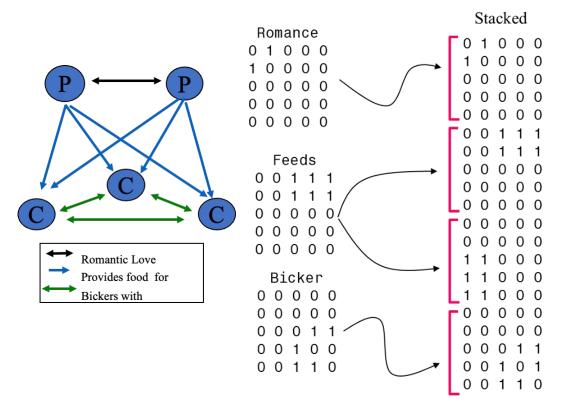
Correlation of two nodes' column vectors and row vectors

Larger value indicates higher equivalence

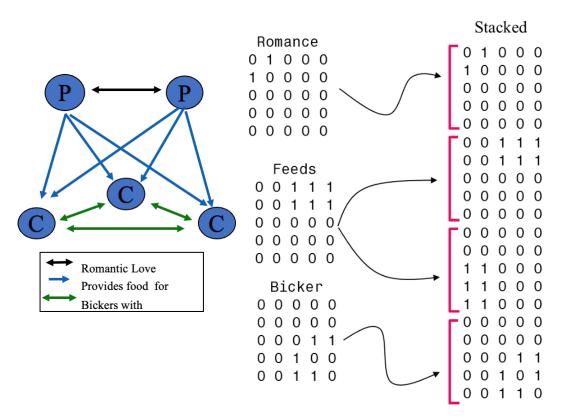


Measure the similarity in a pair's connections to all other nodes

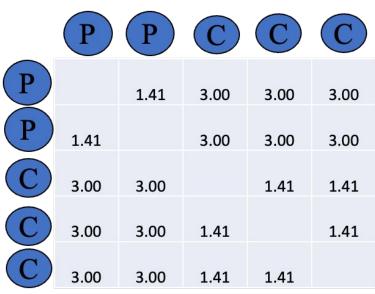
Examples:
Cosine similarity
Pearson correlation
Euclidean distance



Euclidian Distance Matrix 1.41 3.00 3.00 3.00 1.41 3.00 3.00 3.00 3.00 3.00 1.41 1.41 3.00 3.00 1.41 1.41 3.00 3.00 1.41 1.41



Euclidian Distance Matrix

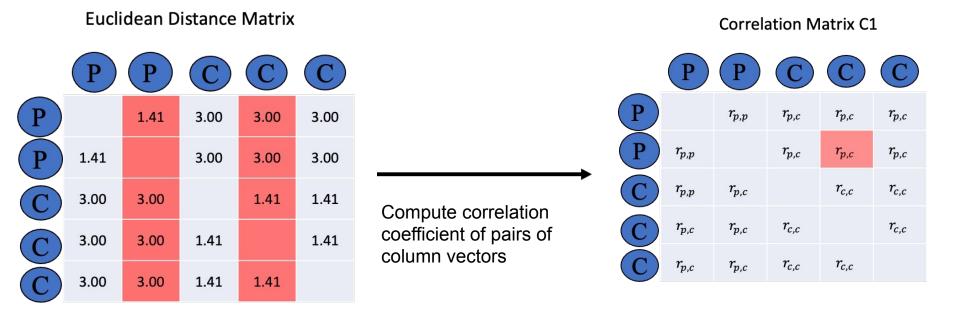


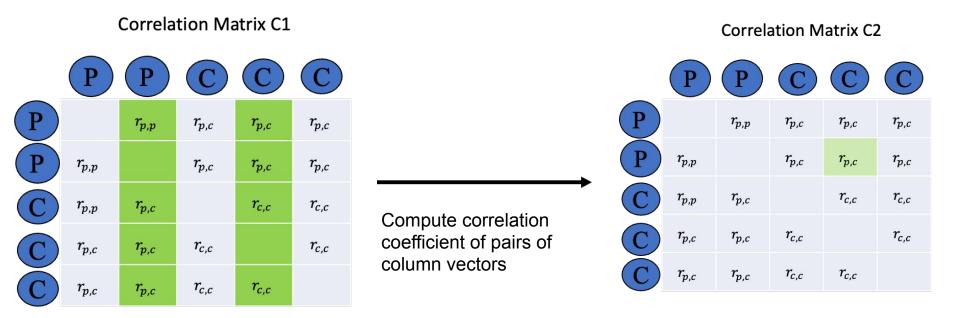
Objective: group the nodes that have similar distances

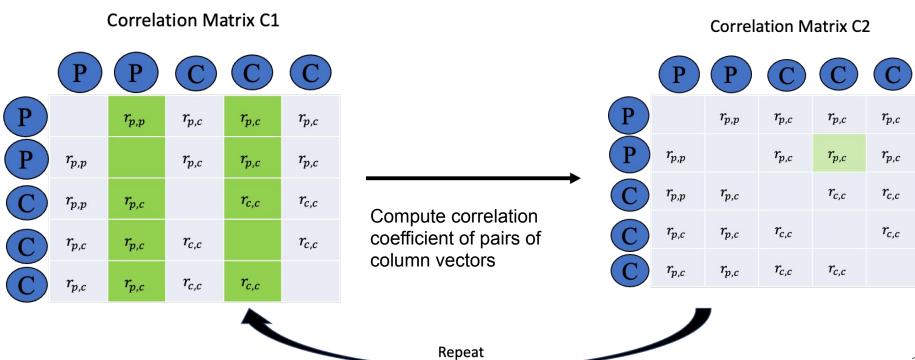
Partition the Euclidean distance matrix (Pearson correlation matrix) into blocks where nodes in the same block have similar distances to the rest of the nodes

CONCOR:

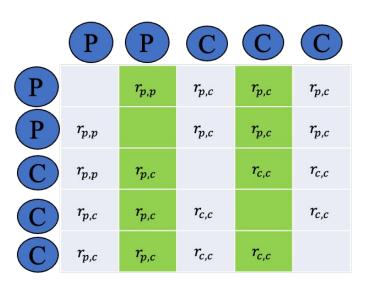
CONvergence of iterated **COR**relations







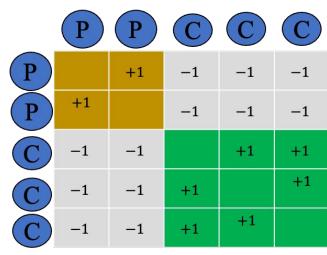
Correlation Matrix C1



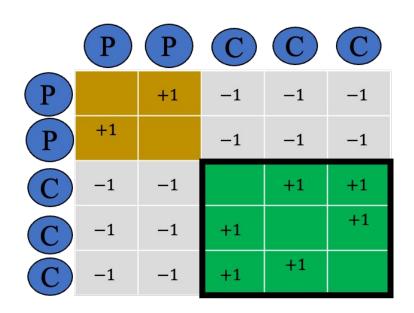
Repeated computation converges to +1s and -1s

Permute the rows and columns to get partitions

Converged Matrix



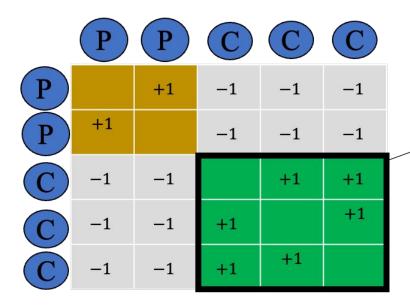
Partition the Nodes

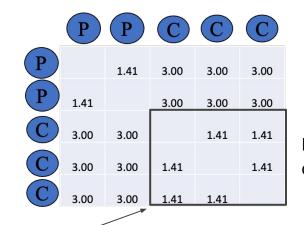


After convergence, we always obtain two partitions

- +1 within the two partitions
- -1 between partitions

Partition the Nodes





Repeat correlation on partition

We can further obtain sub-partitions within each partition by repeating the iterative correlations:

- Euclidean distance within the partition
- Run CONCOR on Euclidean distance sub-matrix
- Permute rows and columns to get sub-partitions

These partitions are called blocks
Hence, the name blockmodeling

Data Reduction

Adjacency matrix

Density i	matrix	
-----------	--------	--

→ Image matrix

		\mathscr{B}_1	982	£33	984
		1 2	1111	11 11 1	2
		593540	3908	176242168	1 7
	5	-00001	1111	111011111	11
	9	0-0000	0011	111111111	1 1
931	3	01-011	0011	111111101	1 1
	15	111-11	1111	111111111	1 1
	4	0000-1	0011	111101111	10
	20	00010-	0001	111111111	10
	13	110000	-001	000011100	0.0
	19	101101	0 - 11	100011100	0 1
982	10	101111	11-1	110001111	0.0
	18	111111	111-	100011111	1 1
	11	000000	0000	-00001100	01
	17	000010	0000	0-0001100	1 1
	6	000000	0000	00-000000	10
	12	000000	0000	000-00000	1 1
983	14	000000	0001	0000-1000	1 1
	2	000000	0000	00100-000	1 1
	1	000010	0001	000001-11	10
	16	000000	0011	0000011-0	0.0
	8	000010	0011	10100100-	1 1
984	21	001011	0001	011111001	- 1
	7	000000	0001	111111000	1 -

	981	\mathcal{B}_2	\mathcal{B}_3	984
\mathscr{B}_1	0.367	0.625	0.944	0.833
982	0.708	0.750	0.528	0.375
93	0.056	0.167	0.194	0.722
984	0.250	0.250	0.667	1.000

	81	\mathcal{B}_2	\mathcal{B}_3	984
981	0	1	1	1
982	1	1	1	0
98 ₂	0	0	0	1
984	0	0	1	1

Once partitions are obtained from CONCOR, rearrange the nodes by partition membership

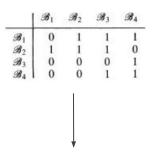
Compute the edge density of the partition-to-partition relations (e.g., B1→B2 is 0.625)

Dichotomize the density matrix based on some criterion (e.g., alpha density criterion)

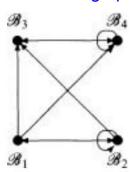
Wasserman and Faust (1994)

Block model

Image matrix



Reduced graph



Reduced graph visualizes the connections among partitions

Each partition is a potential position of structural equivalence

The directed edges in the reduced graph represent roles

Useful for understanding the structure of the network

Blocks vs. Communities

Community detection and block models are similar in that they both summarize a network by grouping individuals

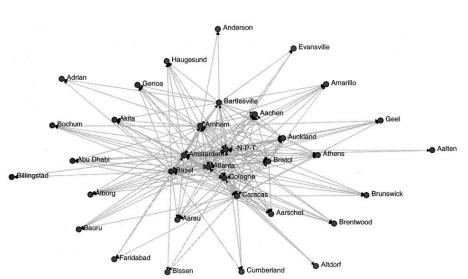
The main difference: Community detection tries to discover groups based on dense connections among members of a group

Block models are "agnostic" to within-block density and only care that block members exhibit similar connection patterns to other blocks.

Block Model Example: Global City Blocks

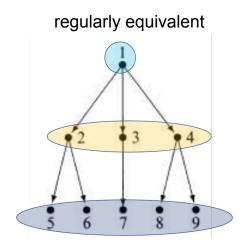
City-city ties based on headquarter-branch locations of the world's 500 largest multinational firms

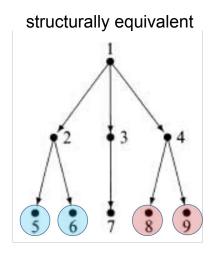
- Headquarter in Paris, branch in London: **London**→**Paris** tie
- Block model based on regular equivalence



	Block Name	g_k	Out k/Out	In _k /In	Self k/Out k	Position
	L-N-P-T	4	37.18	14.61	22.83	Primary
	Amsterdam	11	25.98	11.04	17.47	Primary
	Basel	27	20.49	6.87	15.15	Primary
	Atlanta	13	6.00	13.44	28.79	Primary
	Caracas	16	2.31	4.59	26.28	Primary
	Cologne	6	1.20	-95	12.10	Primary
	Bristol	2	.52	.47	.67	Primary
	Auckland	16	.30	8.65	53.49	High-status clique
	Athens	52	.04	8.64	27.27	High-status clique
0	Bochum	12	.01	-55	75.00	High-status clique
1	Arnhem	16	4.21	-37	4.85	Low-status clique
2	Bartlesville	7	-54	.10	15.92	Low-status clique
3	Aachen	79	.00	4.98	.00	Snob
4	Brunswick	7	.00	.40	.00	Snob
5	Evansville	4	.00	.12	.00	Snob
6	Geel	2	.00	.07	.00	Snob
7	Genoa	5	.00	-33	.00	Snob
8	Aalten	818	.00	3.20	.00	Isolate

Regular Equivalence

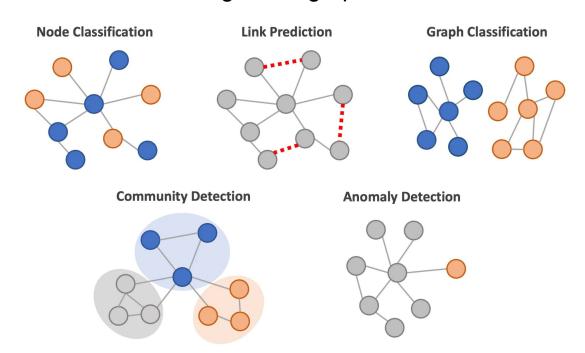




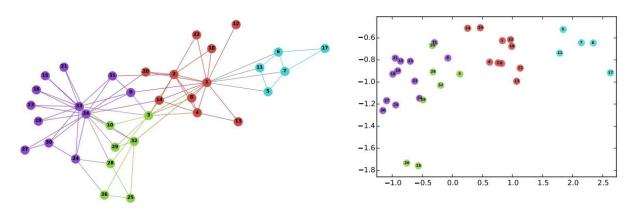
Regularly equivalent actors have identical ties to and from actors in other equivalence classes

Regular equivalence relaxes the stringent requirement of structural equivalence

Graph representation learning: Graphs are used to extract useful information for prediction tasks at the node, edge, and graph levels



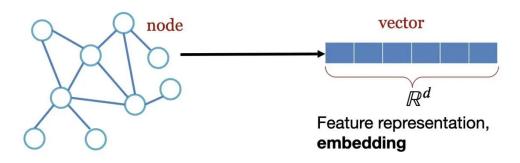
Idea: Take a network and somehow map the nodes in k-dimensional space



(a) Input: Karate Graph

(b) Output: Representation

It is a process of reducing the graph information onto low-dimensional "features" The features can be expressed as a vector of coordinates



Each node in a network can be expressed in terms of a vector of length K (K dimensions)

The coordinates in this vector represents the position of a node

Nodes are embedded in this K-dimensional space

This embedding can be used for various prediction tasks node vector Feature representation, embedding Node1 -0.30.1 0.244 0.156 -0.110.5 Node2 0.2 0.99 0.1 -0.003 0.314 -0.000001 Node3 0.339 -0.220.1 0.988 -0.142 -0.212

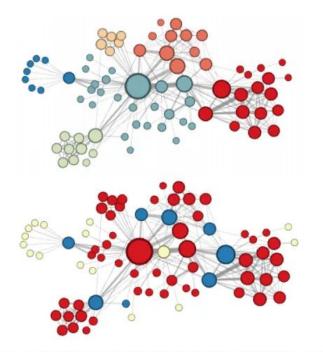


Figure 3: Complementary visualizations of Les Misérables coappearance network generated by *node2vec* with label colors reflecting homophily (top) and structural equivalence (bottom).

Node2Vec is a popular method for graph representation learning

Structural equivalence is an important consideration in how the algorithm works

A parameter can be tuned to prioritize homophily or structural equivalence in learning the node features

Grover and Leskovec 2016

Theoretical considerations

Dual nature of structural equivalence

People in the same position share similar experiences

- Structural equivalence means similar interaction patterns
 Similarity can be helpful for learning in uncertain situations
 But, it can also breed competition
 - Structurally equivalent people are substitutable

Summary

Individuals can be grouped based on dense connectivity within vs. sparse connectivity between groups

An alternative way of thinking about groups is to partition the individuals based on the similarity of their ties to and from other individuals

The similarity in the connectivity links to the notion of social positions and roles

Block model is a useful method to hypothesize about social positions and role relations