Network Analysis:

The Hidden Structures behind the Webs We Weave 17-338 / 17-668

Network Inequality Thursday, October 31, 2024

Patrick Park & Bogdan Vasilescu

Carnegie Mellon University School of Computer Science

2-min Quiz, on Canvas

How do scale-free networks emerge?

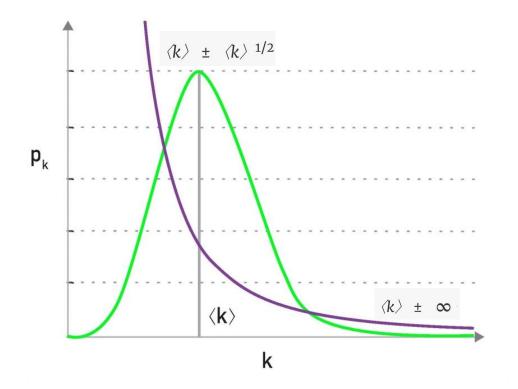
Moments in statistics: Quantitative measures that describe the shape of a distribution

- *n*=1: The first moment is the average degree, $\langle k \rangle$.
- *n*=2: The second moment, $\langle k^2 \rangle$, helps us calculate the variance $\sigma_2 = \langle k^2 \rangle \langle k \rangle^2$, measuring the spread in the degrees. Its square root, σ , is the *standard deviation*.
- *n*=3: The third moment, $\langle k^3 \rangle$, determines the *skewness* of a distribution, telling us how symmetric is p_k around the average $\langle k \rangle$.

$$\langle k^n \rangle = \sum_{k_{\min}}^{\infty} k^n p_k \approx \int_{k_{\min}}^{\infty} k^n p(k) dk$$
 (4.19)

$$\langle k^n \rangle = \int_{k_{\min}}^{k_{\max}} k^n p(k) dk = C \frac{k_{\max}^{n-\gamma+1} k_{\min}^{n-\gamma+1}}{n-\gamma+1}$$
(4.20)

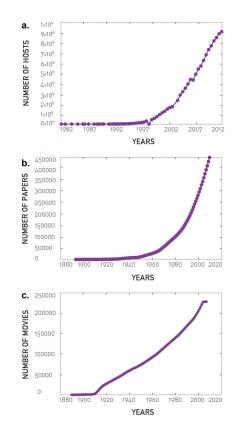
• If $n - \gamma + 1 \le 0$ then the first term on the r.h.s. of (4.20), $k_{max}^{n-\gamma+1}$, goes to zero as k_{max} increases. Therefore all moments that satisfy $n \le \gamma - 1$ are finite.


• If $n-\gamma+1 > 0$ then $\langle k^n \rangle$ goes to infinity as $k_{max} \rightarrow \infty$. Therefore all moments larger than $\gamma-1$ diverge.

$$\langle k^n \rangle = \int_{k_{\min}}^{k_{\max}} k^n p(k) dk = C \frac{k_{\max}^{n-\gamma+1} k_{\min}^{n-\gamma+1}}{n-\gamma+1}$$
(4.20)

• If $n - \gamma + 1 \le 0$ then the first term on the r.h.s. of (4.20), $k_{max}^{n-\gamma+1}$, goes to zero as k_{max} increases. Therefore all moments that satisfy $n \le \gamma - 1$ are finite.

• If $n-\gamma+1 > 0$ then $\langle k^n \rangle$ goes to infinity as $k_{max} \rightarrow \infty$. Therefore all moments larger than $\gamma-1$ diverge.


For n=3 (i.e., skew), when power-law exponent is $2 < \gamma < 3$, the network's skew infinitely increases with the size of the network

Poisson Distribution: Degrees of vast majority of nodes center around $\langle k \rangle$ $\rightarrow \langle k \rangle$ serves as a "scale" that reasonably describes the distribution

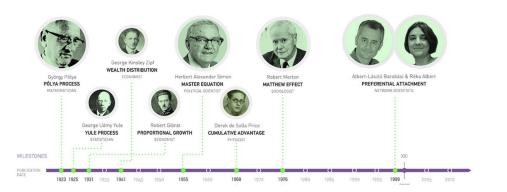
Power-law Distribution: Degrees of vast majority of nodes do not center around <k> and some can be arbitrarily large

- \rightarrow <k> is not a reasonable "scale"
- \rightarrow Hence, "scale-free"

"Preferential attachment" model by Barabasi and Reka Albert Two assumptions:

- Growth: The network infinitely grows, one node added at a time

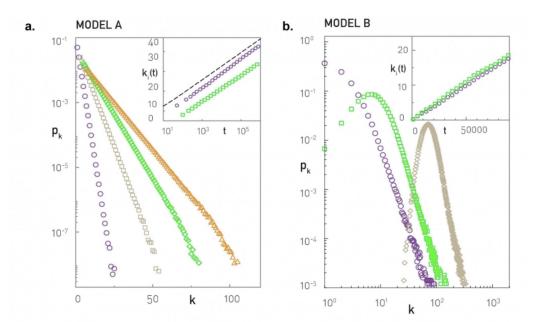
For to everyone who has will more be given, and he will have abundance;


but from him who has not, even what he has will be taken away.

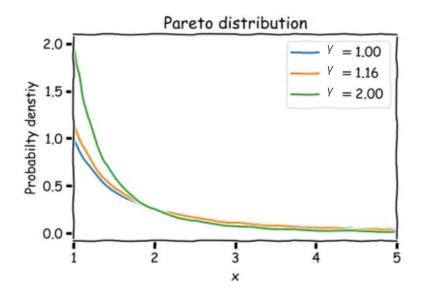
-Matthew 25:29

i.e., The rich get richer and the poor get poorer

"Preferential attachment" model by Barabasi and Reka Albert Two assumptions:

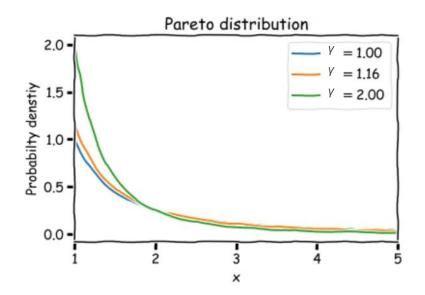

- Growth: The network infinitely grows, one node added at a time
- Preferential Attachment: A new node is more likely to link to high degree nodes
 - Rich get richer, "Matthew effect", Zipf's law...

https://ccl.northwestern.edu/netlogo/models/PreferentialAttachmentSimple


Both conditions are necessary

- Model A: No growth
- Model B: No preferential attachment

Degree Distribution and Inequality


What does y tell us about inequality?

A social network that is scale-free implies significant social inequality

- few hubs monopolize the edges in a network
- Vast majority of nodes, have degree smaller than <k>

What does y tell us about inequality?

Q: Which is closer to an egalitarian, equitable social network: **high γ** or **low γ**?

Q: Is it the extremely high frequency of low-degree nodes or the extremely high degree of the few hubs that determine inequality?

Q: From a social justice perspective, which is preferable: **impoverished society that is egalitarian** vs. **affluent society under dictatorship**?

What does y tell us about inequality?

Which network is the most unequal?

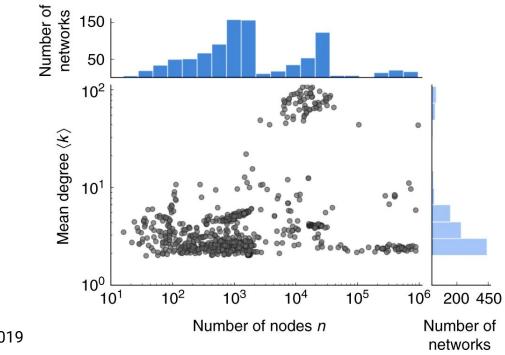
Network	N	L	k >	∕k _{in} ²∕	∕k _{out} ²∕	k² >	Y _{in}	Yout	γ
Internet	192,244	609,066	6.34	-	-	240.1	-	-	3.42*
WWW	325,729	1,497,134	4.60	1546.0	482.4	-	2.00	2.31	-
Power Grid	4,941	6,594	2.67	-	-	10.3	-	-	Exp.
Mobile-Phone Calls	36,595	91,826	2.51	12.0	11.7	-	4.69*	5.01*	-
Email	57,194	103,731	1.81	94.7	1163.9	-	3.43*	2.03*	-
Science Collaboration	23,133	93,437	8.08	-	-	178.2	-	-	3.35*
Actor Network	702,388	29,397,908	83.71	-	-	47,353.7	-	-	2.12*
Citation Network	449,673	4,689,479	10.43	971.5	198.8	-	3.03*	4.00*	-
E. Coli Metabolism	1,039	5,802	5.58	535.7	396.7	-	2.43*	2.90*	_
Protein Interactions	2,018	2,930	2.90	-	-	32.3	-	-	2.89*-

Degree Distribution and Social Inequality

In a social network, large degree indicates influence and power

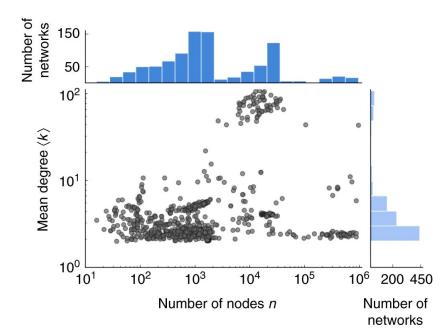
- Degree centrality

The distribution of node degree reflects inequality in power and influence


Q: Based on your experience, how extreme is the skew in power and influence?Q: Does your perception match with the power-law degree distribution?Q: Is the distribution of power and influence "scale-free"?

Recall, for n=3 (i.e., skew), when power-law exponent is $2<\gamma<3$, the network's skew infinitely increases with the size of the network

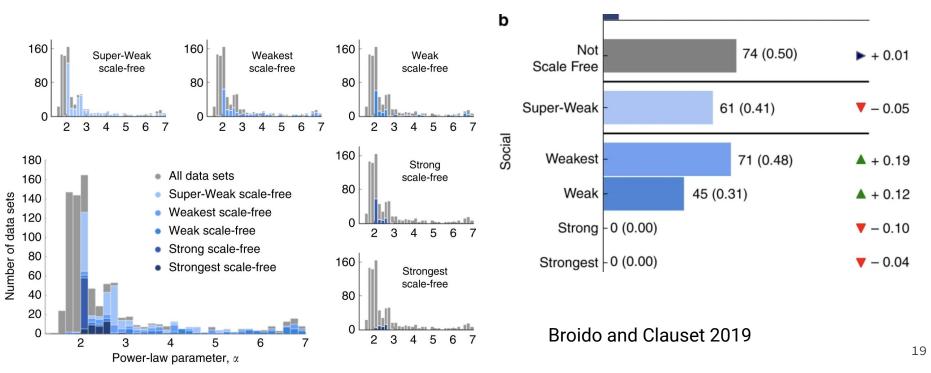
This is not realistic for social networks


Rarity of scale-free social networks

How common are scale-free networks?: Sample of 928 networks

Rarity of scale-free social networks

How common are scale-free networks?: Sample of 928 networks

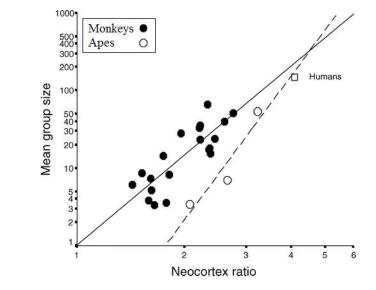

Criterion for judging "scale-freeness"

- **Super-Weak**: For at least 50% of graphs, no alternative distribution is favored over the power law.
- Weakest: For at least 50% of graphs, a power-law distribution cannot be rejected ($p \ge 0.1$).
- Weak: Requirements of Weakest, and the power-law region contains at least 50 nodes (ntail ≥ 50).
- **Strong**: Requirements of Weak and Super-Weak, and for at least 50% of graphs.
- **Strongest**: Requirements of Strong for at least 90% of graphs, and requirements of Super-Weak for at least 95% of graphs.

Broido and Clauset 2019

Rarity of scale-free social networks

Most social networks are not scale-free



Why are many social networks not scale-free?

Maintaining a large network is cognitively costly!

- Dunbar's number: A species group size correlates with brain size
- Human groups have been about 120 people



Why are many social networks not scale-free?

Status distinction in social groups

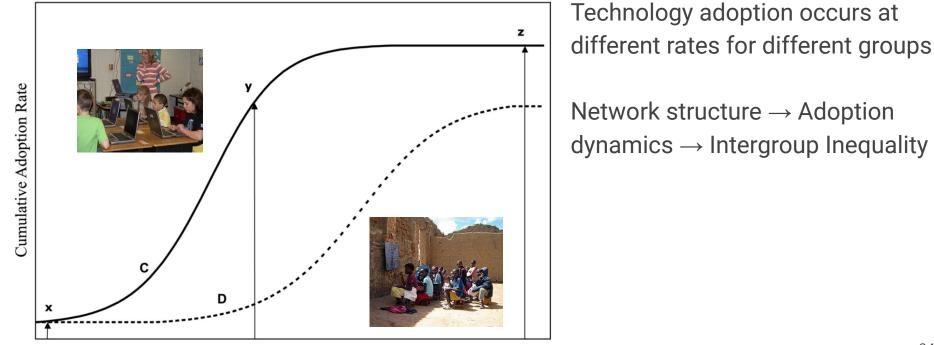
- Status homophily (Remember degree assortativity?)
- Avoidance of status contamination

Why are many social networks not scale-free?

Table 3: Assortativity	y for	BA	graph, <i>N</i> =1000
------------------------	-------	----	-----------------------

Graph definition		Assortativity				
N_0	т	r _{min}	r _{max}	$r_{average}$		
3	2	-0.147	-0.038	-0.092		
4	2	-0.158	-0.038	-0.089		
5	2	-0.135	-0.038	-0.084		
10	2	-0.116	-0.006	-0.064		
10	3	-0.093	-0.018	-0.055		
10	5	-0.078	-0.008	-0.046		

Source: Noldus and Mieghem

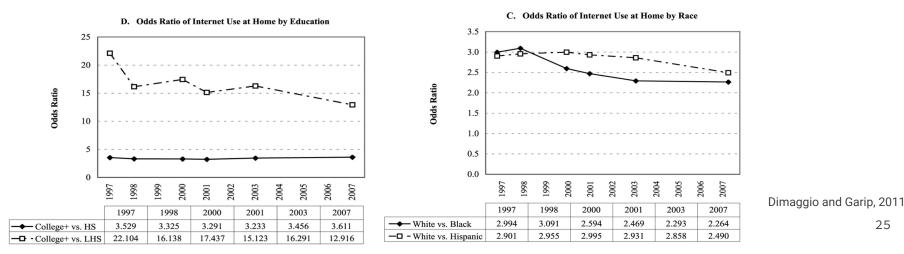

Social networks show positive assortativity Scale-free networks generated by the BA model are not assortative

Individual level: Low degree nodes have incentive to avoid humiliation / reminder of lower status

Collective level: Trying to connect to the highest degree node is not always optimal due to competition

Other Mechanisms of Network Inequality

Case: Digital Divide


Homophily, Externalities, and Intergroup Inequality

Network externalities

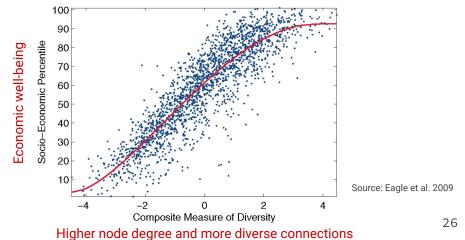
- Value of the technology increases with adoption
- The more your friends use it, the more value to you (e.g., Twitter vs. Mastodon) -

Homophily

- Adoption rate difference between groups is greater when social network is very homophilous
- Strong homophily means sparse intergroup connections \rightarrow adoption is slow in the disadvantaged group -

Homophily, Externalities, and Intergroup Inequality

Network externalities


- Value of the technology increases with adoption
- The more your friends use it, the more value to you (e.g., Twitter vs. Mastodon)

Homophily

- Adoption rate difference between groups is greater when social network is very homophilous
- Strong homophily means sparse intergroup connections \rightarrow adoption is slow in the disadvantaged group

Feedback

- Benefits of adoption can lead to network inequality

Summary

Mechanism of scale-free networks

Social networks often do not follow power-law degree distributions

Scale-free networks \rightarrow network inequality

Cost and social dynamics matter for the degree distribution (i.e., social inequality)