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Network Models




1. Random Networks (recall)




A random network consists of N nodes where each node pair is
connected with probability p

Three realizations of a random network with p=0.03 and N=100. Several nodes
have degree k=0, shown as isolated nodes at the bottom.



Around <k>=1 a giant component grows very fast
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Random networks are “small worlds”

The dependence of the average distance 1D LATTICE -
in a random network on N and <k>: (d)-N 2D LATTICE
nN e (@-N
(d)= In{k)
3D LATTICE
(d (d)~N"2

The distances in a random network are
orders of magnitude smaller than the
size of the network.

RANDOM
NETWORK

(For our world social network, if N = 7 x10°
and <k> = 10°, we get{d)= 3.28.)



The random network model underestimates the size and frequency

of the high degree nodes, and the number of low degree nodes.
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The random network model underestimates the size and frequency
of the high degree nodes, and the number of low degree nodes.
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Probability of a triangle is close to 0 in random networks

Random graphs are useful as a baseline model.

But real-world social networks differ from
random graphs in an important way.

They contain more triangles.

These triangles, or triads, are the telltale sign of
social groups.
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Aside: Here’s why

On a random network, the probability that a
pair of neighbors of a node is connected is ...?
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Aside: Here’s why

On a random network, the probability that a
pair of neighbors of a node is connected is p.

The link probability is the same for every pair
of nodes by construction (p), regardless of
their having common neighbors or not.

Thus, the average clustering coefficient is well
approximated by p, a very small number in
real networks (because real networks are
sparse).
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Real networks are different from
random ones.

Su m m a ry E-R networks do have short paths,
but triangles are rare, resulting in
average clustering coefficient
Random Networks values that may be orders of

magnitude smaller than those
measured in real networks.




Aside: Facebook circa 2012 (721M users, 69B friendship links)
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Figure 2. The probability mass functions of the distance distributions Figure 3. The average distance graph. See also Table 6.

of the current graphs (truncated at distance 10).

Backstrom, L., Boldi, P, Rosa, M., Ugander, J., & Vigna, S. (2012). Four degrees of separation. In Proceedings of the 4th Annual ACM Web
Science Conference (pp. 33-42).



Aside: Global Milgram-style experiment

e Participants online were randomly allocated to one of 18 target persons from 13 countries.

o Targets: a professor at an Ivy League university, an archival inspector in Estonia, a technology
consultant in India, a policeman in Australia, and a veterinarian in the Norwegian army.

e Task: help relay a message to the allocated target by passing the message to a social acquaintance
whom they considered “closer” than themselves to the target.

e Including initial and subsequent senders, data were recorded on 61,168 individuals from 166
countries, constituting 24,163 distinct message chains.

Dodds, P. S., Muhamad, R., & Watts, D. J. (2003). An experimental study of search in global social networks. science, 301(5634), 827-829.
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Aside: Global Milgram-style experiment
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Dodds, P. S., Muhamad, R., & Watts, D. J. (2003). An experimental study of search in global social networks. science, 301(5634), 827-829.
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2. Small Worlds (Watts-Strogatz)




Short paths & high clustering?

Duncan Watts & Steve Strogatz idea:

Start from a grid-like network where all nodes have
the same number of neighbors — high average

clustering coefficient.
The internal nodes have degree k = 6 and clustering coefficient C = 6/ (g) = 6/15 =
2/5. Border nodes have smaller degree k = 4,3,2 and even higher clustering coeffi-
cients, respectively C = 3/(§) =SlRC = 2/(;) =2/3, and C'= 1/(%) = 1. Therefore

the average clustering coefficient is at least 2/5 and converges to 2/5 in the limit of
infinite lattice (N —> 00).

(a) Average path length is large.

(Menczer et al, 2020; Ch. 5)
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Short paths & high clustering?

Duncan Watts & Steve Strogatz idea:

(b) Rewire a few links to randomly selected nodes,
creating shortcuts (in red).

The shortest path from blue to green goes down
substantially.

But the average clustering coefficient remains high,

because only a few triangles are disrupted by the
rewiring.

(Menczer et al, 2020; Ch. 5)
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Rewiring procedure: Preserve one endpoint of a randomly chosen
link, replace the other endpoint with a node chosen at random

Applies to each link of the network with rewiring probability p.
The expected number of rewired links is pL.

p = 0 — initial lattice

p =1 — random network

(All links are rewired to random nodes, which is equivalent to placing links
between randomly chosen pairs of nodes)

22



Rewiring procedure: Preserve one endpoint of a randomly chosen
link, replace the other endpoint with a node chosen at random

Applies to each link of the network with rewiring probability p.
The expected number of rewired links is pL.
p = 0 — initial lattice (path length is high)

p =1 — random network (clustering is low)
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Sweet spot is grey area: Average path length is almost as short as in
random network, clustering coefficient is almost as high as lattice.
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(Menczer et al, 2020, Ch. 5; Watts & Strogatz)
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Small World Network Simulation

https://ccl.northwestern.edu/netlogo/models/Small\Worlds
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https://ccl.northwestern.edu/netlogo/models/SmallWorlds

Example: American Corporate Elite (Board Interlock)

Table 2 Changes in the elite network, 1982—1999

N K@vg L (avg L c W
N (component) degree)  geodesic)  C (random)  (random)  quotient
Alllarge’ firms
1982 boards 648 58 10.0 338 024 2.76 0017 |'1.34
1990 boards 591 524 8.8 346 024 2.88 0017 | 1.87
1999 boards 600 516 8.6 346 022 2.98 0016 | 1.84

1982 directors 6505 5853 19.0 427 088 24 0003  186.82
1990 directors 5393 4768 17.0 430 087 2.99 0004 16921
1999 directors 531 | 4538 160 4.33 0.87 3.06 0003  183.03

Single panel of firms at three points in time

1982 boards 195 |77 6.8 3.15 0.24 2.70 0.039 5.33
1990 boards 195 185 76 3.06 0.23 2.58 0.041 443
1999 boards 195 186 72 298 0.20 2.64 0.039 4.55
1982 directors 2366 2179 19.1 403 091 261 0.009 67.23

1990 directors 2078 1976 |74 398 0.89 2.65 0.009 67.26
Davis et al. 2003 1999 directors 1916 1819 16.3 3.86 0.88 2.69 0.009 68.35



https://journals.sagepub.com/doi/abs/10.1177/14761270030013002

Example: German Company Ownership Network

Table 2. How Small Is Germany’s Small World: A Comparison

Actual-to-Random Ratio for:

Path Length Clustering Length/
Network Actual Random Actual Random Length Clustering Clustering
Film actors network ? 3.65 2.99 79 .001 122 2,925.93  2,396.90
Power grid network ? 18.70 12.40 .08 .005 1.51 16.00 10.61
C. Elegans network ? 2.65 2.23 28 .05 1.18 5.60 4.75
German firms, 5.64 3.01 .84 022 1.87 38.18 22.46
connected
German owners, 6.09 5.16 .83 .008 1.18 118.57 100.48
connected

a Data come from Watts and Strogatz (1998). See text above for descriptions of these networks.

Kogut and Walker 2001 27


https://www.jstor.org/stable/3088882

Summary

Small Worlds

Still no hubs!

The degree distribution transitions
from that of the initial lattice (all
nodes have identical degree), to

that of a random network with the
same number of nodes and links.

Hence, for any value of the rewiring
probability p, all nodes have similar
degree.




Recall: A scale-free network is a network whose

degree distribution follows a power law

logp, ~—ylogk



(a)

Poisson vs. Power-law Distributions /| , =«

P POISSON

Small k: power law is above the Poisson — a
scale-free network has a large number of small
degree nodes, most of which are absent in a

0.05 =

random network. T
k around{k): the Poisson is above the power law — ®

in a random network there is an excess of nodes
with degree k=(k)

Large k: power law is again above the Poisson —
observing a high-degree node, or hub, is orders of
magnitude more likely in a scale-free network.
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Scale-free vs E-R random networks vs W-S small worlds

Short paths?
Hubs?

Triangles?

31



3. Preferential Attachment




The Preferential Attachment (BA) Model Explains Scale-Free
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Two assumptions:

- The network grows, one node added at a time
2 | ! - A new node is more likely to link to high degree nodes
- Rich get richer, “Matthew effect”, Zipf's law...
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Preferential Attachment Mechanics

(Menczer et al, 2020; Ch. 5)



Preferential attachment results in hubs. But might growth, without

preferential attachment, be sufficient?

b
Older nodes get more @) R s (b)

chances to receive links,
which makes them even
more likely to attract
new links in the future.

Growth alone is not () 100 < —
sufficient! (b) —— Preferential attachment
. 21071, = T e No preferential attachment
E
8102
3 10
[a
10-3
10° 101 .

(Menczer et al, 2020; Ch. 5) Node degree k



Non-linear preferential attachment?




Linear preferential attachment is the way to go!
K
2 i kp
where the exponent « is a parameter. For « = 1 we recover the standard BA model.
What happens when o # 1? There are two different scenarios:

[Ia(i <)) = (3.10)

1. If « < 1, the link probability does not grow with degree as fast as in the BA model,
so the advantage of high-degree nodes over the others is not as big. As a result, the
degree distribution does not have a heavy tail — the hubs disappear!

2. If ¢ > 1, high-degree nodes accumulate new links much faster than low-degree
nodes. As a consequence, one of the nodes will end up being connected to a fraction
of all other nodes. The effect is even more extreme when o > 2, in which case we
observe a winner-takes-all effect: a single node may be connected to all other nodes,
which have approximately the same, low degree.
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Summary

Preferential Attachment (BA)

Fixed pattern for the degree
distribution: same slope for any
choice of model parameters.

— Real degree distributions could
decay faster or more slowly.




Summary

Preferential Attachment (BA)

The hubs are the oldest nodes.

— New nodes cannot overcome
them in degree.

39



It does not create many triangles.

SU m ma ry — The average clustering

coefficient is much lower than in
Preferential Attachment (BA) many real networks.




Summary

Preferential Attachment (BA)

Nodes and links are only added.

— In real networks they can also be
deleted.

41



Summary

Preferential Attachment (BA)

Since each node is attached to
older nodes, the network consists
of a single component.

— Many real networks have
multiple components.




Other Preferential Models




4. Attractiveness Model

BA: If a node has no neighbors, it will never have neighbors!

|dea: Besides degree, make nodes receive links also because of an intrinsic
attractiveness.

44



h. Fitness Model

BA: Hubs are the oldest nodes. But newcomers can overtake existing nodes in
popularity. Previous attractiveness parameter is the same for all nodes.

Idea: Model individual node fitness.

45



6. Random Walk Model

BA: Triangles are formed rarely, because the probability of a node receiving a link
is proportional to its degree, regardless of whether the new pair of neighbors have
a common neighbor or not.

|dea: In addition to creating random connections, also connect to a new neighbor’s
neighbors.

46



6. Random Walk Model




1. Gopy Model

Triadic closure — An individual copies the contacts of somebody else.
Copying takes place in other contexts, e.g., gene duplication, citations, ...

The copy model is similar to the previous random walk model (a new node gets
wired either to a randomly selected old node, with some probability, or else to its
neighbors).

However, there is no triadic closure in the copy model.

48



8. Rank Model

BA: Need to know the degree of the nodes. More realistic to have a perception of
the relative ranking.




Summary




Applications




Broadway Musical Production Network

The growing business of Broadway

T Combined gross revenue of Broadway shows, 1984 to 2019 I S -th e C reativity Of
The
L gt _an entire industry
Oi)vaA $1.83B
\ oo related to network
structure?
$1.00B
$0.50B
$209m

1984-85 2018-19

DATA: The Broadway League «HUSTLE
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Small-World and System-Level Collaboration and Creativity

How does the “small-worldness” (high clustering, short path length) affect a creative industry’s overall
collaboration and creativity?

Small-world networks emerge from cohesive structures through repeated collaborations between artists
(high clustering) and new collaborations between artists who belonged to separate clusters (low path
length).

Higher “small-worldness” predicts a musical’s success to a certain point
- New ideas can spread efficiently (low PL)
- Risk assessment and implementation cost of those ideas are lowered by familiar collaboration ties

(high CC)

Too high “small-worldness” implies low system-level diversity
- New ideas spread too quickly
- Highly cohesive groups fall into “group think”

Prediction: Inverted U-shape relationship between success and “small-worldness”
53



Broadway musical artist network

The Pajama Game 1954 West Side Story 1957 Gypsy 1959 Fiddler on the Roof 1967
Teams , ‘
E7ANINY
e /’ [RNEN " -
RN S e S
aiss @ @ 6 © 9 O O @
A B C
7’ ’,'; ~ B c
Teams are fully f T \ D
linked cliques \\, A
v

New shows

are added each year
Dynamic

growth of ¢ ;
network ¥
E —

Source: Uzzi and Spiro 2005

54


https://www.kellogg.northwestern.edu/faculty/uzzi/ftp/uzzi%27s_research_papers/0900904.pdf

Measuring “small-worldness”

Small-world quotient Q:

Ratio of CC to PL, where each is normalized by corresponding quantities
computed from random bipartite graphs of same size and degree distribution

Random bipartite graph generation:
- M musicals’ degree distribution (i.e., number of artists)
- N artists' degree distribution (i.e., number of musicals)
- Construct random bipartite graph that holds the two degree distributions
constant

55



Small-World and System-Level Collaboration and Creativity

AVERAGE CLUSTER COEFFICIENT PATH LENGTH Q 1966 ... 13 75 301 146 205 3.04 2.37 1.28 1.59

s Mlif:;m ?I‘Z";‘ T T T N T——r ‘;f[:’/ 1967 ... 7 8.3 302 .148 204 298 233 127 159
i . gilal Sancom, halle Acta, SANComy o] sl 1968 ... 16 7.9 329 165 198 296 232 127 155

1945 ... 14 7.1 .287 077 3.7 3.13 2.23 1.40  2.63 1969 ... 13 7.3 .33 .166 1.97 297 2.36 1.25° 157
1946 ... 19 6.8 295 073 4.02 3.11 2.24 1.38 2.90 1970 ... 14 7.0 331 167 1.98 2.97 2.36 1:25" A.57
1947 ... 12 6.7 311 074 415  3.12 227 1.37  3.01 1971 .6 17 6.0 354 .18 1.96 3.2 2.46 1.30: 151
1948 ... 16 6.6 315 078 404 3.14 2.34 1.34  3.01 1972 ... 16 6.7 381 188 2.02 3.53 2.:51 1.40 1.43
1949 ... 9 5.8 319 089 355  3.04 2.36 1.29 2.5 1973 ... 12 7.4 .389 .193 201 348 2.56 1.36  1.47
1950 ... 16 8.4 325 097 3.34  3.09 2.40 1.28 2.9 1974 ... 9 6.4 .391 .189 206  3.54 2.57 1.37  1.49
1951 :.u 11 6.4 33 .109 3.02 3.06 2.41 1.26 2.38 1975 s 17 7.3 371 146 2.54 3.74 2.58 1.44 175
1952 ... 8 7.0 .328 .109 301 3.03 2.36 1.28 2.35 1976 ... 14 7.7 376 .146 257 3.5 2.58 145 1.77
1953 ... 8 8.0 338 116 2.9 2.98 2.28 1.30; 2.22 1977 ... 7 7.0 375 .139 269 3.72 2:53 147 1.82
1954 ... 11 7.9 328 115 285 298 2.24 1.32: 2:15 1978 ... 19 6.6 .364 141 257 3.61 2.49 144 1.78
1955 ... 12 7.8 .33 133 247 293 2.22 1.31 1.88 1979 ... 16 8.6 .358 .148 241 3.42 2.45 1.39 1.72
1956 ... 10 7.8 .3453 133 255 293 2.24 .31 1.94 1980 ... 14 7.9 .365 .149 243 354 2.49 142 171
1957 ... 11 7.2 .355 14 253 297 2:25 .31 1.92 1981 ... 17 7.8 .355 153 231 348 2.53 1.37  1.68
1958 ... 11 7.0 353 136 258  3.06 2.25 1.36  1.89 1982 ... 15 7.1 .355 .169 209 357 2.53 141 148
1959 ... 16 7.4 342 139 245 3.03 2.27 1.33  1.84 1983 ... 10 8.6 .361 178 202 3.61 2.59 1.39  1.45
1960 ... 13 6.8 343 144 238  3.06 2.34 1.31 181 1984 ... 4 7.0 .358 178 2 3.59 2.58 1.39  1.44
1961 ... 17 6.1 .338 .146 231 3.09 2.38 1.29 1.78 1985 ... 9 79 .366 .183 2 3.58 2.61 1.37  1.46
1962 ... 13 6.0 344 .16 213 3.14 2.39 .31 1.63 1986 ... 8 7.5 .369 173 2,12 3.69 2.61 141 150
1963 ... 13 6.9 324 .154 209  3.21 2.38 1.34 155 1987 ... 8 6.3 .383 207 1.85  3.71 2.67 .39  1.33
1964 ... 17 6.9 314 147 212 317 2.38 1.33  1.59 1988 ... 8 6.9 409 2 204 3.87 2.69 143 142
1965 ... 18 7.2 304 141 2,15 3.12 2.40 1.29  1.65 1989 ... 10 6.9 .406 .182 223 36 2.62 1.37  1.62
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Financial and artistic success of Broadway shows
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Randomization Strategies




Randomizing requires care

Strategy of comparing against random networks (deeper dive)

- Other randomization strategies for small-world networks
- Randomizing nodes vs. edges
- The case of homophily (nodes vs. weights)

- Hierarchical modeling strategy

- Successively more constrained random networks as baseline
- The case of high school romantic network structure
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https://journals.sagepub.com/doi/10.1177/1094428116675032

Considerations for random graph generation

Know your graph

One-mode vs. two-mode
Directed vs. undirected
Weighted vs. unweighted

— 2%2*%2 = 8 types

Table 1. Available and Recommended Measurement for Different Types of Networks.

Path Length
1-mode Unweighted
network,
undirected,
unweighted
1-mode Unweighted
network,
directed,
unweighted
1-mode Weighted,
network, normalized
undirected, weights
weighted
1-mode Weighted,
network, normalized
directed, weights
weighted
2-mode Projection,
network, weighted,
undirected, normalized

unweighted weights

2-mode Projection,
network, weighted,
directed, normalized

unweighted weights

2-mode Projection,
network, asymmetric
undirected, weights,
weighted normalized
weights
2-mode Projection,
network, asymmetric
directed, weights,
weighted normalized

weights

Clustering

Global
clustering
coefficient

Global
clustering
coefficient

Global
clustering
coefficient

Global
clustering
coefficient

2-mode
global
clustering
coefficient

2-mode
global
clustering
coefficient

2-mode
global
clustering
coefficient

2-mode
global
clustering
coefficient

Randomization
Procedures

Erdos and Renyi
Tie rewiring

Erdos and Renyi
Tie rewiring

Erdos and Renyi
Tie rewiring
Weight rewiring

Erdos and Renyi
Tie rewiring
Weight rewiring

Erdos and Renyi
Tie rewiring

Erdos and Renyi
Tie rewiring

Erdos and Renyi
Tie rewiring
Weight rewiring

Erdos and Renyi
Tie rewiring
Weight rewiring

Recommended

Tie rewiring (preserves degree
distribution)

Tie rewiring (preserves degree
distribution)

Tie rewiring (preserves degree
distribution) or weight rewiring
(preserves largest connected
component, but do not alter
structure)

Tie rewiring (preserves degree
distribution) or weight rewiring
(preserves largest connected
component, but do not alter
structure)

Tie rewiring (preserves degree
distribution)

Tie rewiring (preserves degree
distribution)

Tie rewiring (preserves degree
distribution) or weight rewiring
(preserves largest connected
component, but do not alter
structure)

Tie rewiring (preserves degree
distribution) or weight rewiring
(preserves largest connected
component, but do not alter
structure)
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Table 4. Comparison With Different Type of Random Networks.

Transformed networks

Observed network
distance

Expected network
distance

Difference (%)

Network distance in
classic random
networks

Network distance in
tie reshuffled random
networks

Observed clustering
coefficient

Expected clustering
coefficient

Difference (%)

Clustering coefficient
in classic random
network

Clustering coefficient
in tie reshuffled
random networks

u.s.
Power
Grid

18.99

8.66

119

8.48
[8.25;
8.70]

8.49
[8.42;
8.57]

0.10

0.00

18,992

0.00
[0.00;
0.00]

0.00
[0.00;
0.00]

u.s.
Airports

299

2.51

19

277
[2.74,
2.80]

2.59
[285¥;
2.61]

0.35

0.02

1,371

0.02
[0.02;
0.03]

0.24
[0.23;
0.25]

C. Elegans

Neural
Network

2.46

217

183

2.46[2.43;

2.49]

2.38[2.36;
2.40]

0.18

0.05

293

0.05 [0.04;

0.05]

0.11[0.11;
0.12]

Online
Social
Network

3.06

2.82

3.09
[3.07;
3.11]

3.04
[3:03;
3.06]

0.06

0.01

640

0.01
[0.01;
0.01]

0.08
[0.08;
0.08]

Scientific
Collaboration

6.63

5.99

19

5.79 [5.76;

5.82]

4.94[4.94;
4.95]

0.36

0.00

105,578

0.00 [0.00;

0.00]

0.01 [0.01;
0.01]

Online
Forum

1.88

1.34

40

1.82
[1.82;
1.82]

1.86
[1.85;
1.86]

0.50

0.18

186

0.18
[0.18;
0.18]

0.43
[0.43;
0.43]

Classic random vs. tie reshuffling

Classic: pick two nodes at random
and connect them

Reshuffling: Start from observed
network, randomly pick two edges
and swap

(A-B and C-D becomes A-C and
B-D)
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Considerations for random graph generation

Degree distribution

- Model-based: Uniform random (Erd6s—Rényi), poisson, power-law...

- Observation-based:
Best-fit parametric distribution (power-law with estimated exponent)
Observed degree probability density
Degree sequence: Each node’s degree is preserved
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Node vs. edge randomization

Vast majority randomizes edges
In some studies, node attributes are randomized while edges are not

- Christakis and Fowler’s obesity study randomizes node attribute (obesity) to
assess obesity clustering

- Measuring homophily level of multiple groups in a network requires edge

randomization, preserving each node’s degree
- Average degree of a group can affect homophily measurement
- Therefore, average degree of the groups need to be “controlled for” in the random graphs

- However, when nodes are randomized, the average degrees of different groups become the
same
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Summary

Random network construction
requires careful assessment
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