Network Analysis:

The Hidden Structures behind the Webs We Weave 17-338 / 17-668

Homophily and Degree Correlation Thursday, September 19, 2024

Patrick Park & Bogdan Vasilescu

2-min Quiz, on Canvas

Quick Recap – Last Thursday's Lecture

Homophily and how to measure

The natural sciences perspective

Homophily: Status & Power

Degree homophily: "degree assortativity" or "degree correlation" – high-degree nodes tend to be connected to other high-degree nodes and vice versa.

Extensively studied from a graph-theoretic perspective.

Degree Assortativity / Disassortativity

Example:

Degree Assortativity / Disassortativity

(a) **Positive** degree correlation: Connected nodes have similar degree

(b) **Neutral**: The degree of connected nodes have no correlation

(c) **Negative** degree correlation: Connected nodes have dissimilar degree

Measuring degree correlation: Average degree of the neighbors of a node of degree k

Average degree of neighbors increases as k increases \rightarrow assortative network

Average degree of neighbors neither increases nor decreases as k increases \rightarrow degree neutral network Average degree of neighbors decreases as k increases \rightarrow disassortative network

Human social networks tend to exhibit positive degree correlations

Why positive?

Why is the email network negative?

Human social networks tend to exhibit positive degree correlations

Why positive?

 \rightarrow Open question. Several studies argue that it is related to the fact that humans form groups

→ People in large groups tend to have high degree (more group members to connect with) and those in small groups are constrained in forming ties - hence low degree

Why is the email network negative?

→ Networks with skewed degree distributions tend to exhibit negative degree correlations

11

(Barabasi Ch. 3.6; Erdős & Rényi, 1959)

Impact of Assortativity: Higher connectivity

Giant component can emerge at lower mean degree <k>

Impact of Assortativity: Higher connectivity

Giant component can emerge at lower mean degree <k>

Case Study: The Friendship Paradox

You only have a directory of phone numbers

Option 1: Call a person randomly

The chance that you pick Tom is ... ?

You only have a directory of phone numbers

Option 1: Call a person randomly

The chance that you pick Tom is 1/7 ~ 14%

You only have a directory of phone numbers

Option 2: Call a person randomly, and ask them about a random friend

The chance that you pick Tom is ...?

You only have a directory of phone numbers

Option 2: Call a person randomly, and ask them about a random friend

The chance that you pick Tom is 5/21 ~ 24%

Mary: 0/1, Nancy: ¹/₃, John: ¹/₂, Pam: ¹/₂, Bob: ¹/₃, Tara: 0/1, Tom: 0/4

Probability of being called: 1/7

Therefore: $(0/1+\frac{1}{3}+\frac{1}{2}+\frac{1}{3}+0/1+0/4)*1/7 = 5/21$

Average degree: ?

Average degree: (1+3+4+2+2+3+1)/7 = 16 / 7 = 2.29

Average degree of neighbors: ?

Average degree: (1+3+4+2+2+3+1)/7 = 16 / 7 = 2.29

Average degree of neighbors:

(3+8/3+10/4+3+3+8/3+3) / 7 = 2.83

Average degree: 2.29

Average degree of neighbors: 2.83

Your friends have more friends than you, on average!

But it doesn't hold for everyone:

Nancy has 3 friends: Mary, Tom, Bob

They have in total 1 + 4 + 3 = 8 friends

 \rightarrow Nancy's friends have on average 8/3 friends (i.e., less than Mary)

Aside: The dark side of homophily

Exceedingly easy to connect with people who share our worldviews and unfriend / unfollow people with different opinions.

Information can be shared and consumed in such a selective and efficient way as to influence our opinions very effectively.

Result: segregation and polarization of our online communities.

High risk of manipulation by misinformation and social bots.

Aside: Networks can also exhibit inverse homophily

If the fraction of cross-gender edges is significantly <u>more</u> than 2pq.

Do you remember any example?

Aside: Networks can also exhibit heterophily

If the fraction of cross-gender edges is significantly <u>more</u> than 2pq.

Yes! The high school dating network

Comparing Homophily between Groups

Problem:

If groups X and Y have different levels of homophily, how can we measure them separately and compare them to each other?

Approach 1: Compare the observed probability of a red-red tie to a random baseline, do the same for the white-white tie, and see which observed probability deviates farther from random.

Measuring homophily

What is the observed probability of a tie between two nodes from group x?

$$\longrightarrow \quad \widehat{Pr_{xx}} = \frac{L_{xx}}{L}$$

What is the random baseline probability?

 $\rightarrow Pr_{xx} = \left(\frac{N_x}{N}\right)^2$ pes the observed deviate from the random baseline?

Measuring homophily

Q: What is a hidden assumption in this homophily test?

Hint: Recall how Erdos-Renyi random graphs are constructed.

Every dyad has equal probability, p, of getting connected

So, both groups will have the same average degree

$$D_x = D_y$$

Measuring homophily

Actual average degrees of x and y

x: red, y: white

Dx = 10/3 = 20/6

Dy = 25/6

Dx < Dy

So, even if group x and y have the same homophilous tendency, group y will have more friends, so they may appear more homophilous

Summary

We've seen another fundamental property of networks: similarity between neighbors

(Recall short paths connecting nodes and triangles formed by common neighbors)

Two <u>extremely</u> powerful analysis techniques: comparison to a random (shuffled) network and longitudinal analysis!