Network Analysis:

The Hidden Structures behind the Webs We Weave 17-213 / 17-668

Power and Centrality in Social Exchange Thursday, September 26, 2024

Patrick Park & Bogdan Vasilescu

2-min Quiz, on Canvas

Quick Recap – Last Tuesday's Lecture

Power, influence, prominence of an individual is relational: They originate from relationships that the individual has with others

Network centrality quantifies this relational view of power

- Degree centrality
- Closeness centrality
- Betweenness centrality
- Eigenvector centrality

Centrality measures tend to be correlated (e.g., degree and closeness), but they quantify different facets / dimensions of power

Where Centrality Breaks: Positive Sum vs. Zero-Sum Relations

The Social Exchange Perspective

All human interactions are "exchanges" that are social by nature

- Market exchange of goods/services
- Non-market exchange: gift, favors, advice, respect, emotion, invitation, etc.
- Interdependence (needs/wants) drives social interaction in the form of exchange

Trust is the basis of all exchanges (and social interactions)

- "How can I be sure that they won't cheat?"
- Market vs. non-market exchanges use different mechanisms to solve the problem of trust
- What are they?

The Social Exchange Perspective

Market exchange:

- Terms of exchange: Negotiation
- Time frame: Immediate (spot market)
- Enforcement: Institutional sanctions, formal law
- Problem of trust: solved by central enforcers (state)
- Zero-sum: A's profit is B's cost

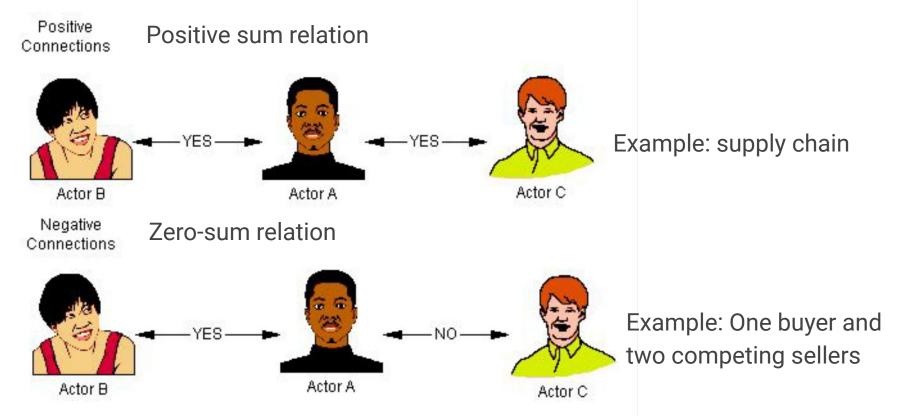
Non-market exchange:

- Terms of exchange: Reciprocity
- Time frame: Unspecified
- Enforcement: Social pressure, norms
- Problem of trust: solved by the decentralized collective (reputation, ostracism)
- Not clearly zero-sum: A's profit does not directly mean B's cost

The Social Exchange Perspective

Social ties we use to construct networks and the network measures we apply implicitly assume social interactions to resemble non-market exchange

- Reciprocity
- Social pressure discourages norm violation (trust from triadic closure)
- Power and influence grows with having more exchange partners (centrality)
- Not clearly zero-sum: A's social support to B can be reciprocated at a later time in-kind or with different resources (e.g., labor, status, loyalty)


Positive vs. Negative Connections

Network measures cannot be blindly applied to any network

Example: The Interdependence between ties one exchange relation is contingent on the (non)exchange in a neighboring relation

- positive connections: Flow of resources from $B \rightarrow A \rightarrow C$. C can receive resources from A only if B transfers them to A.
- negative connections: zero-sum relations. A's exchange with B implies that A does not need to exchange with C \rightarrow B's gain is C's loss

Positive vs. Negative Connections

Positive vs. Negative Connections

Degree centrality predicts "power" in networks of positive connections

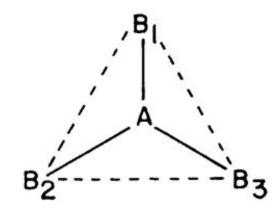
Question: Does centrality predict power in networks of negative connections (i.e., zero-sum relations)? **Why**?

Power-Dependence Theory

For negative connections:

- If B depends on A more than A depends on $B \rightarrow A$ has that much more power over B (Emerson, 1962)

$$P_{AB} = D_{BA}$$


- These dependencies (hence power) stem from positions in the exchange network

So, does centrality and power-dependence logic make the same predictions about powerful positions in negatively connected networks?

Centrality in Negatively Connected Exchange Networks

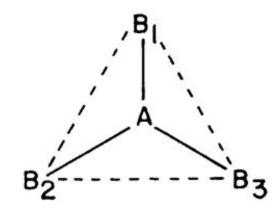
Exchange network experiment by Cook et al. (1983)

(a) 4 person network (two positions)

Lines: Exchange opportunities

- **Solid lines**: Two people negotiate how to split \$24 (larger pot)
- Dashed lines: Negotiate how to split \$8 (smaller pot)

Alphabets: Exchange positions


Same alphabet positions
 (e.g., B1 and B2) are identical

Local knowledge: Participants do not know the exchange network (only the ties that they have) ¹²

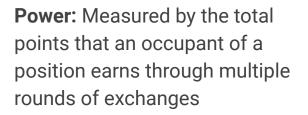
Centrality in Negatively Connected Exchange Networks

Exchange network experiment by Cook et al. (1983)

(a) 4 person network
 (two positions)

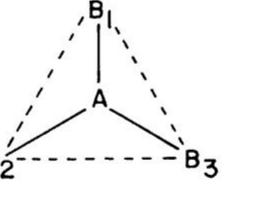
Network 1(a): A can exchange with only one among B1, B2, and B3 in one round

A and a partner in position B can negotiate how to split \$24 (solid line)


B1 and B2 can negotiate how to split \$8 (dashed line)

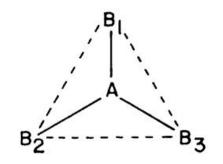
Negatively connected: In a round, If A chooses B1 as partner, then B2 and B3 cannot exchange with A

Predictions of Power According to Centrality


Exchange network experiment by Cook et al. (1983)

(a) 4 person network
 (two positions)

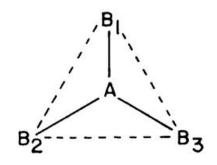
Centrality: A is the most central in terms of **weighted** degree, closeness, and betweenness centrality


Therefore, centrality predicts that power should be A > B1 = B2 = B3

Predictions of Power According to Power-Dependence Theory

Power-dependence theory Prediction

(a) 4 person network (two positions)


If B1 exchanges with B2 or B3 \rightarrow \$4 If B1 exchanges with A \rightarrow any point above \$4 is more beneficial If B1 suggests to A for an equal split (\$12:\$12)

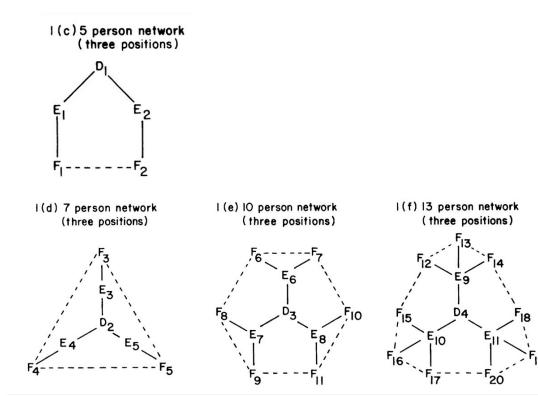
B2 and B3 are in the same situation as B1They will offer equal split to AB1, B2, and B3 all **depend** on A to get a better outcome than \$4

In turn, A can bargain with all three for a better deal **Q**: At equilibrium, what is the maximum that A will likely get?

Predictions of Power According to Power-Dependence Theory

(a) 4 person network (two positions)

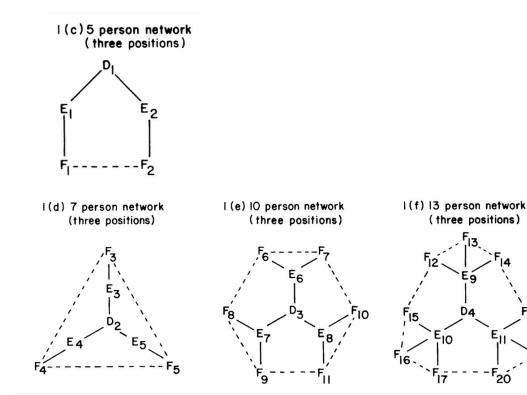
At equilibrium: A's expected payoff: \$20, B's expected payoff: \$4


B position is dependent on A position to maximize payoff \rightarrow A's power over B is equal to B's dependence on A

Power: A > B1=B2=B3

(Same as centrality)

Predictions of Power According to Centrality

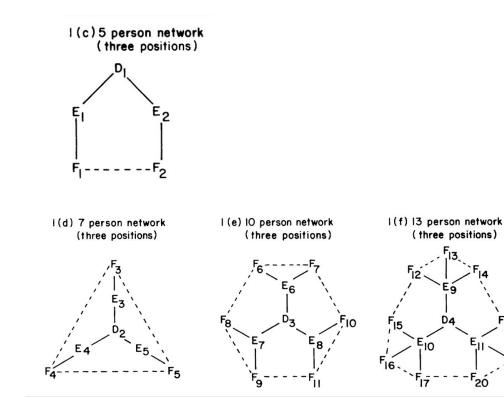

Exchange network experiment by Cook et al. (1983)

D is the most central in terms of (weighted) **closeness and betweenness** centrality for all configurations Power: D > E > F

Predictions of Power According to Centrality

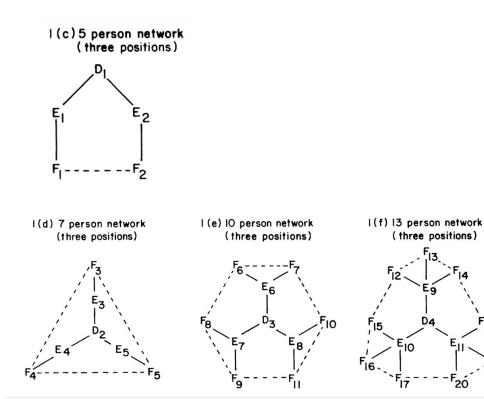
Exchange network experiment by Cook et al. (1983)

D is the most central in terms of (weighted) **closeness and betweenness** centrality for all configurations Power: D > E > F


D and **E** have same **degree** centrality in 1c and 1e Power: D = E > F

D has larger degree than **E** in 1d Power: D > E > F

E has larger degree than **F** in 1f Power: E > D > F


18

Predictions of Power According to Power-Dependence Theory

Q: Who is the most powerful according to power-dependence theory?

Predictions of Power According to Power-Dependence Theory

Q: Who is the most powerful according to power-dependence theory?

F is dependent on E for higher payoff \rightarrow E can ask for \$20 to F

 \rightarrow E can also ask D for a "price match" (\$20)

D cannot earn more than \$4 because each E can exchange with their F for equivalent payoff

D's and F's expected payoffs will be \$4

Power: E > D = F

Experimental Evidence

Experiment designed with network 1c

- Recruited 100 university students
- 27 transaction rounds

Negotiate with connected partners each round Only one transaction per round per person

- negatively connected

Transactions are not revealed to others

(c)5 person network (three positions)

TABLE 1

EXPERIMENTAL RESULTS:

Mean Profit of Person E per Exchange with D and with F in Network 1c by Exchange Incentive and Trial Block

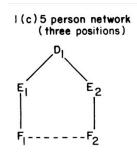
Exchange	TRIAL BLOCKS					
INCENTIVE AND Exchange Partner	1	2	3			
Low:						
D	13.80	12.69	13.32			
	(4.13)	(4.26)	(4.25)			
F	13.27	14.78*	15.44**			
	(3.10)	(2.77)	(2.96)			
High:						
D	12.90	13.72	17.19**			
	(3.71)	(4.40)	(5.26)			
F	15.52**	16.66**	16.91**			
	(2.38)	(2.10)	(2.46)			
Combined:						
D	13.35	13.21	15.26**			
	(3.95)	(4.36)	(5.16)			
F	14.40**	15.72**	16.18**			
	(2.99)	(2.63)	(2.82)			

 $Note \label{eq:note} Mote-The profit obtained by D and F in negotiations with E can be obtained by subtracting the values in this table (E's profit) from 24 Standard deviations are in parentheses$

* Significantly greater than 12 (P < 05)

** Significantly greater than 12 (P < 01)

Experimental Evidence


Experiment designed with network 1c

- Recruited 100 university students
- 27 transaction rounds

Negotiate with connected partners each round Only one transaction per round per person

- negatively connected

Transactions are not revealed to others

Why was E's power realized clearly in the last 9 rounds (Block 3)?

Why didn't E reach theoretical maximum (20 points)?

TABLE 1

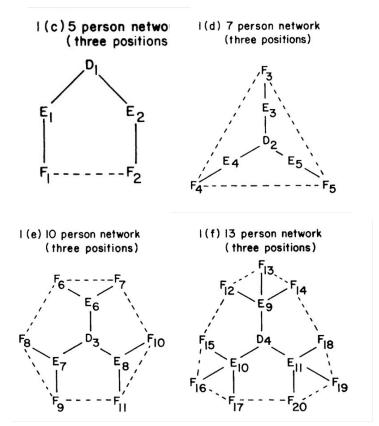
EXPERIMENTAL RESULTS:

Mean Profit of Person E per Exchange with D and with F in Network 1c by Exchange Incentive and Trial Block

Exchange	TRIAL BLOCKS					
INCENTIVE AND Exchange Partner	1	2	3			
Low:						
D	13.80	12.69	13.32			
	(4.13)	(4.26)	(4.25)			
F	13.27	14.78*	15.44**			
	(3.10)	(2.77)	(2.96)			
High:						
D	12.90	13.72	17.19**			
	(3.71)	(4.40)	(5.26)			
F	15.52**	16.66**	16.91**			
	(2.38)	(2.10)	(2.46)			
Combined:						
D	13.35	13.21	15.26**			
	(3.95)	(4.36)	(5.16)			
F	14.40**	15.72**	16.18**			
	(2.99)	(2.63)	(2.82)			

Note —The profit obtained by D and F in negotiations with E can be obtained by subtracting the values in this table (E's profit) from 24 Standard deviations are in parentheses

* Significantly greater than 12 (P < 05)

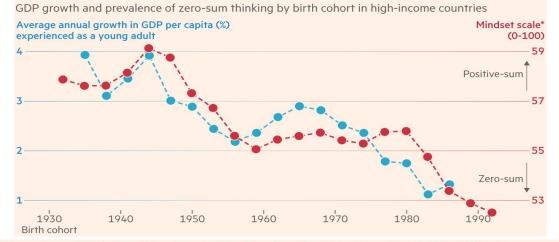

** Significantly greater than 12 (P < 01)

Simulation Evidence

TABLE 2

SIMULATION RESULTS:

MEAN PROFIT OF THE POWERFUL (E) PER "EXCHANGE" WITH D AND WITH F IN FOUR REPLICATIONS VARYING NETWORK SIZE


FIGURE PART, SIZE OF	TRIAL BLOCKS							
Network, and E's Exchange Partner	1	2	3	4	5	6		
1c, 5 actor:								
D	12.79a	15.36	17.15	18.60	19.31	19.55		
	(2.57)	(2.76)	(2.98)	(2.11)	(1.67)	(1.44)		
F	14.71	16.33	17.83	19.08	19.86	19.91a		
	(2.64)	(2.76)	(2.56)	(1.86)	(1.42)	(1.26)		
1d, 7 actor:								
D	10.56b	13.03	15.00	16.54	17.64	18.47		
	(3.02)	(3.07)	(2.81)	(2.32)	(1.68)	(1.43)		
F	14.33	15.31	16.64	17.79	18.66	19.06		
	(2.95)	(2.34)	(2.40)	(1.93)	(1.38)	(.97)		
1e, 10 actor:								
D	13.99	17.69	19.65	20.06	20.11	20.11		
	(2.89)	(2.37)	(1.07)	(.58)	(.55)	(.54)		
F	16.35	18.68	19.86	20.11	20.22	20.01		
	(2.16)	(1.35)	(.59)	(.42)	(.43)	(.39)		
1f, 13 actor:								
D	14.50a	19.56c	20.42	20.63	20.50	20.43		
	(3.18)	(2.10)	(.86)	(.66)	(.64)	(.55)		
F	17.18	20.06	20.67	20.87	20.69	20.58		
	(1.69)	(.74)	(.57)	(.59)	(.52)	(.49)		

NOTE.—These values represent the average profit E obtained in "exchanges" with D and F, with 24 units of profit available for each "exchange"; therefore D's and F's average profit equals 24 - E's profit in each case. Each trial block contained nine trials. Cell values are based on the simulation of 50 groups; in an occasional group, however, E did not complete an "exchange" in a given trial block. Cell means labeled "a" are based on 49 groups, that labeled "b" has 47 groups, that labeled "c" has 42 groups per cell; all others have 50 groups per cell. Standard deviations are in parentheses.

Zero-Sum Relations

Centrality does not accurately capture power in networks of zero-sum relations Then, centrality might not predict power in a society where people believe social life is zero-sum

Older generations grew up with high growth and developed positive-sum beliefs. Recent generations have lived with low growth and are more zero-sum

*100 = "Wealth can grow so there's enough for everyone"; 0 = "People can only get rich at the expense of others"

Sources: FT analysis of World Values Survey; Maddison Project database Based on Zero-Sum Thinking and the Roots of US Political Divides (Chinoy et al., 2023) FT graphic by John Burn-Murdoch / @jburnmurdoch © FT

Power Centrality: A Synthesized Measure

Incorporating Negative Connections

Phillip Bonacich (inventor of eigenvector centrality)

- Proposes modification to eigenvector centrality (Bonacich 1987)

Insight: The source of power comes from

- Connections with powerful actors (positive connections)
- Connections with dependent actors (negative connections)
 - Those who do not have alternative options for exchange

Eigenvector centrality squarely captures power in positive connections

$$\lambda C_E(i) = \sum_j A_{ij} C_E(j)$$

A modified measure should make a node central to the extent that neighbors are less central

Bonacich Power Centrality

Beta parameter determines the importance of the centrality of the neighbors

Beta > 0: higher neighbor centrality increases my centrality

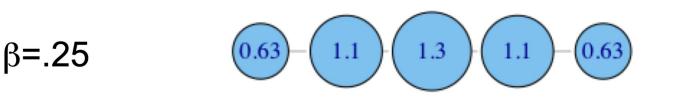
 \rightarrow Connections with powerful actors

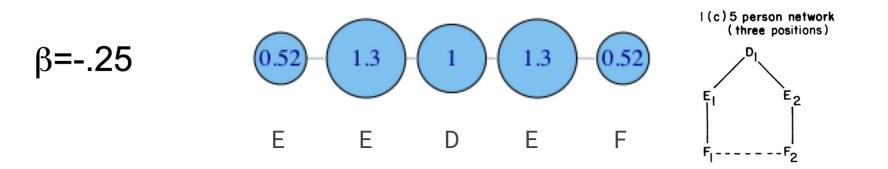
Beta < 0: higher neighbor centrality decreases my centrality

 \rightarrow Connections with dependent actors

Beta = 0: Degree centrality

Eigenvector Centrality


$$\lambda C_E(i) = \sum_j A_{ij} C_E(j)$$


Power Centrality

$$c_i(\beta) = \sum_j (\alpha + \beta c_j) A_{ji}$$

Bonacich Power Centrality

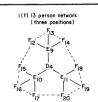
Example:

Bonacich Power Centrality

TABLE 3

			ENTRALI	TY SCORES	FOR FOUR	INETWOR	KS FOR SELE	CTED VAL	JES OF P			
							Network					
-	1c		1d		1e		lf					
Position β	D	E	F	D	E	F	D	E	F	D	E	F
5	.00	1.58	.00									
4	.73	1.45	.36	1.62	1.08	.54	-1.00	1.67	33	-1.72	1.53	57
3	.97	1.34	.49	1.62	1.08	.54	.36	1.81	.12	55	2.03	18
2	1.09	1.27	.54	1.62	1.08	.54	1.00	1.67	.33	.44	2.05	.15
1	1.15	1.23	.58	1.62	1.08	.54	1.30	1.55	.43	1.01	1.91	.34
0	1.20	1.20	.60	1.62	1.08	.54	1.46	1.46	.49	1.33	1.78	.44
.1	1.22	1.17	.61	1.62	1.08	.54	1.57	1.40	.52	1.52	1.67	.51
.2	1.25	1.16	.62	1.62	1.08	.54	1.63	1.36	.54	1.65	1.59	.55
.3	1.26	1.14	.63	1.62	1.08	.54	1.68	1.33	.56	1.74	1.53	.58
.4	1.27	1.13	.64	1.62	1.08	.54	1.72	1.30	.57	1.80	1.48	.60
.5	1.28	1.12	.64									

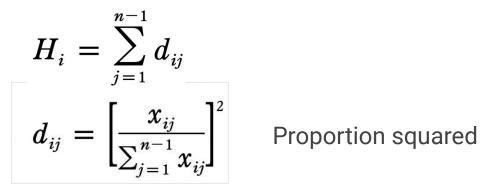
Centrality Scores for Four Networks for Selected Values of $\boldsymbol{\beta}$


l (c)5 person network (three positions)

I (e) IO person network

Robustness vs. Fragility

Bothner et al. applies the recursive intuition in Bonacich's power centrality


One's structural fragility is a function of the fragility of the alters

Insight:

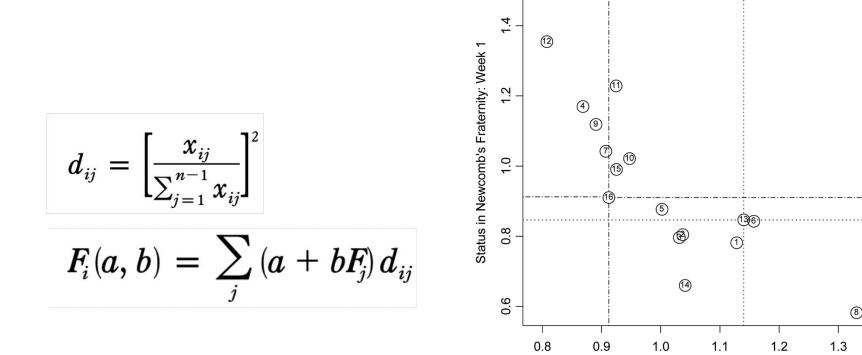
- Fragility roughly means too much reliance/dependence on few people
- The position is even more fragile if those few people are also in fragile positions

Structural Fragility

Herfindahl Index (H): Measures concentration

 x_{ij} Tie weight of *i*-*j* edge

The more that i's weight is concentrated to fewer alters, i's fate is greatly affected by those few

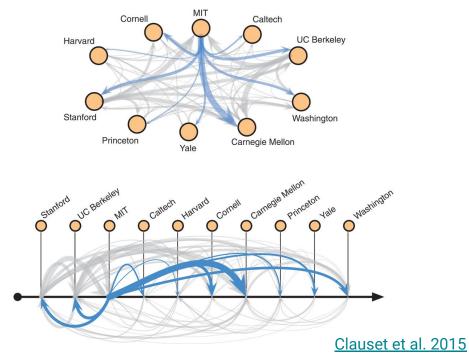

Structural Fragility

Use the herfindahl index matrix instead of the adjacency matrix

$$d_{ij} = \left[\frac{x_{ij}}{\sum_{j=1}^{n-1} x_{ij}}\right]^2$$

$$F_i(a, b) = \sum_j (a + bF_j) d_{ij}$$

Structural Fragility



(17)

Fragility in Newcomb's Fraternity: Week 1

Example: University department prestige and fragility in the network of faculty hiring

PhD faculty job placement network is hierarchical

Fig. 1 Prestige hierarchies in faculty hiring networks.

(**Top**) Placements for 267 computer science faculty among 10 universities, with placements from one particular university highlighted. Each arc (u,v) has a width proportional to the number of current faculty at university v who received their doctorate at university $u \neq v$. (**Bottom**) Prestige hierarchy on these institutions that minimizes the total weight of "upward" arcs, that is, arcs 35 where v is more highly ranked than u.

Example: University department prestige and fragility in the network of faculty hiring

"A fragilely located department is one that trades scholars [faculty hiring between department *i* and *j*] with a limited set of departments that are similarly restricted in their set of exchange partners (Bothner et al. 2010)."

Example: University department prestige and fragility in the network of faculty hiring

"A fragilely located department is one that trades scholars [faculty hiring between department *i* and *j*] with a limited set of departments that are similarly restricted in their set of exchange partners (Bothner et al. 2010)."

TABLE 7Models Predicting Departmental Prestige in Burris's
PhD Exchange Network

	1	2	3	4
Social capital	1.118	1.105	.747	1.068
	(.069)**	(.067)**	(.045)**	(.078)**
Fragility $(c = 0)$				085
				(.093)
Fragility ($c = .99$)		101	093	096
		(.039)*	(.036)*	(.039)*
Article publications	.072	.067	.070	.064
	(.051)	(.049)	(.052)	(.049)
Citations	.005	.005	.026	.005
	(.010)	(.010)	(.053)	(.010)
Research grants	000	001	008	000
	(.003)	(.003)	(.045)	(.003)
Weighted article publications	.180	.176	.112	.165
	(.082)*	(.079)*	(.051)*	(.080)*
Book publications	.245	.217	.114	.232
	(.090)**	(.088)*	(.046)*	(.089)*
Constant	401	294	000	138
	(.150)**	(.151)	(.034)	(.227)
N	94	94	94	94
R^2	.89	.90	.90	.90

Example: University department prestige and fragility in the network of faculty hiring

"A fragilely located department is one that trades scholars [faculty hiring between department *i* and *j*] with a limited set of departments that are similarly restricted in their set of exchange partners (Bothner et al. 2010)."

Question: What do c=0 and c=0.99 mean?

 TABLE 7

 Models Predicting Departmental Prestige in Burris's

 PhD Exchange Network

	1	2	3	4
Social capital	1.118	1.105	.747	1.068
	(.069)**	(.067)**	(.045)**	(.078)**
Fragility $(c = 0)$				085
				(.093)
Fragility ($c = .99$)		101	093	096
		(.039)*	(.036)*	(.039)*
Article publications	.072	.067	.070	.064
	(.051)	(.049)	(.052)	(.049)
Citations	.005	.005	.026	.005
	(.010)	(.010)	(.053)	(.010)
Research grants	000	001	008	000
	(.003)	(.003)	(.045)	(.003)
Weighted article publications	.180	.176	.112	.165
	(.082)*	(.079)*	(.051)*	(.080)*
Book publications	.245	.217	.114	.232
	(.090)**	(.088)*	(.046)*	(.089)*
Constant	401	294	000	138
	(.150)**	(.151)	(.034)	(.227)
N	94	94	94	94
R^2	.89	.90	.90	.90

Summary

Different centrality measures for different aspects of power

Ask if centrality is the right way to think about power, given the nature of the tie (positive vs. negative connections)

Centrality does not quantify power accurately in negatively connected exchange networks

Power-dependence theory gives better prediction

Bonacich power centrality modifies eigenvector centrality to measure centrality in negative connections

Creative variation: Structural fragility