
Network Analysis:
The Hidden Structures behind the Webs We Weave
17-338 / 17-668

Network Analysis of Open Source Software
Tuesday, October 22, 2024

Patrick Park & Bogdan Vasilescu

3

Open Source as digital infrastructure:
Needs regular upkeep and maintenance

● Everybody uses open
source code:
○ Fortune 500 companies
○ major software companies
○ startups
○ government
○ …

• If undermaintained:
‣ Risks for downstream users

‣ Slows down innovation

‣ …

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/

4

Creating sustainable open source communities is hard

In some ways harder today than ever before
… because of how open source has

changed

Today: more problems than
solutions

How has open source
changed?

6

Change #1: GitHub standardized the practices

• GitHub UI• Git version control • The Pull Request model

● Lower barrier to entry

● Easier to contribute
More production

7

● Explosion of production in the past seven years

Change #2: More open source now than ever before

6 million
users

(March 2019)

8

● Profile pages for users and projects

● Rich inferences about people’s
expertise and level of commitment

● Impacts collaboration, but also
recruiting and hiring
○ (Dabbish et al. 2012), (Marlow et al. 2013),

(Marlow and Dabbish 2013)

Change #3: High level of transparency

CV

9

Change #4: Complex socio-technical ecosystems

Interconnections between people and projects

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code/

Can be brittle

1
0

Change #5: Increasing commercialization and
professionalization

● Currently
○ Lots of commercial involvement

■ Companies (Go - Google, React - Facebook, Swift - Apple)

■ Startups (Docker, npm, Meteor)

• Historically
‣ Mostly community-based projects

(Python, RubyGems, Twisted)

• 23% of respondents to 2017 GitHub survey: job
duties include contributing to open source

http://opensourcesurvey.org/2017/

http://opensourcesurvey.org/2017/

11
● Equifax (market cap $14 billion) built products

on top of open-source infrastructure,
including Apache Struts

● Equifax did not make any contributions to
open source projects

● A flaw in Apache Struts contributed to the
breach (CVE-2017-5638)

● Equifax publicly blamed (with national news
coverage) Apache Struts for the breach

Change #6: High expectations toward the quality,
reliability, and security of open source infrastructure

https://www.zdnet.com/article/equifax-confirms-apache-struts-flaw-it-failed-to-patch-was-to-blame-for-data-breach
/

12

Change #7: High level of demands & stress

● Easy to report issues / submit PRs
○ Growing volume of requests

● Social pressure to respond quickly
○ Otherwise, off-putting to newcomers (Steinmacher

et al. 2015)

● Entitlement, unreasonable requests from
users:
○ “I have been waiting 2 years for Angular to track the

‘progress’ event and it still can’t get it right?!?!”
○ “Thank you for your ever useless explanations.”
○ …

13

Change #8: Low demographic diversity

• Gender representation
reality

• Stack Overflow 2015 Developer Survey (26,086 people from 157 countries)
http://stackoverflow.com/research/developer-survey-2015#profile-gender

• Exploring the data on gender and GitHub repo ownership
Alyssa Frazee. http://alyssafrazee.com/gender-and-github-code.html

• FLOSS 2013: A survey dataset about free software contributors: challenges for curating, sharing, and combining G Robles, L Arjona-Reina, B Vasilescu, A Serebrenik, JM Gonzalez-Barahona. MSR 2014
• Google Diversity (2015) www.google.com/diversity/index.html#chart
• Inside Microsoft (2015) https://goo.gl/nT4YiI

10.9% 18% 16.6%

• Expectation

“Code sees no color or gender”

“Any demographic identity is irrelevant”

“More about the contributions to the code
than the ‘characteristics’ of the person”

• Perceptions of Diversity on GitHub: A User Survey. Vasilescu, B.,
Filkov, V., and Serebrenik, A. CHASE 2015

http://stackoverflow.com/research/developer-survey-2015#profile-gender
http://alyssafrazee.com/gender-and-github-code.html
http://www.google.com/diversity/index.html#chart
https://goo.gl/nT4YiI

“Going farther together: The impact of social capital on
sustained participation in open source”

Qiu* et al, ICSE 2019

15* Thanks to Sophie Qiu for slides

Skewed gender ratio: more than 90% of the OSS
population is male

16

17

Research scope - binary gender, GitHub

Gender diversity = Women + Men
A simplifying assumption: gender is binary

Name

Male

Female

Unknown
(low confidence)

After one year ca. 70% of men are still active but only ca. 60% of women

18

On GitHub, women disengage earlier than men

19

Low gender diversity as a challenge to OSS
sustainability: limits contributor pool

(Greenstein and Nagel, 2016)

https://w3techs.com/technologies
/history_overview/web_server

https://w3techs.com/technologies/history_overview/web_server
https://w3techs.com/technologies/history_overview/web_server

20

Low gender diversity as a challenge to OSS
sustainability: harms project success

[Vasilescu et al., 2015]

Low gender diversity as a challenge to OSS
sustainability: limits opportunities

Employers (and job seekers) use open-source
experience to make inferences (or form
impressions) about a candidate’s technical skills.

(Marlow et al., 2013)

https://codeformore.com/how-to-write-up-open-source-experience-when-you-dont-have-any/

22

Minorities face bias and discrimination.

[Terrell et al., 2017]

Social capital theory for sustained participation

Willingness to continue
(Coleman, 1990)

Bonding social capital:
benefiting from strongly connected network

Bridging social capital:
benefiting from network with diverse info

Opportunity to continue
(Burt, 1998, 2001)

H1: more social capital ~ more prolonged engagement

Willingness to continue
(Coleman, 1990)

Bonding social capital:
benefiting from strongly connected network

Bridging social capital:
benefiting from network with diverse info

Opportunity to continue
(Burt, 1998, 2001)

Cohesive network might foster discrimination and exclusion

H2: Teams with more diverse information ~ more
prolonged engagement, esp. for women

26

Information diversity should
reduce the risk of demographic-
based echo chambers.

27

Large-scale mixed-methods study

Bonding social capital – Team Familiarity

28

End of
data

Project A

Project B

Project C

Project X

(de Vaan et al., 2011, Lutter 2015)

TIME

29

End of
data

Project D

Project C

Project X

(de Vaan et al., 2011, Lutter 2015)

TIME

Bonding social capital – Recurring Cohesion

30

End of
data

Project X

Java C C++

C++ C

(de Vaan et al., 2011, Lutter 2015)

TIME

Bridging social capital – Language Diversity

31

End of
data

Project X

Project X
Project X

(de Vaan et al., 2011, Lutter 2015)

TIME

Bridging social capital – Share of Newcomers

32

active, major contributor, proj owner, social
capital

active, major contributor, not owner, social
capital

active, minor contributor, not owner, social
capital

left, minor contributor, not owner, social capital

COX regression model
Contributor Time Active Social capital Control variables

2008 Jan – Mar True Team familiarity
Recurring cohesion
Language diversity
Share of newcomers

Project size
Project owner
……

2008 Jan – Mar True Team familiarity
Recurring cohesion
Language diversity
Share of newcomers

Project size
Project owner
……

2009 Apr – Jun False Team familiarity
Recurring cohesion
Language diversity
Share of newcomers

Project Size
Not project owner
……

33

H1: more social capital ~

more prolonged engagement

34

H2: Language diversity interacts with gender

Innovation and the strength of weak ties

35

Open-source software development is an avenue for innovation and
creative expression.

36

“How creative a person feels when
working on the project is the strongest and
most pervasive driver [of participation in
open source]”

(Lakhani & Wolf, 2005)

“Free software is directly
responsible for today’s current
startup renaissance."

(Eghbal, 2016)

How to define
innovation in
software?

How to measure it?

How does innovation
emerge?

What are its
consequences?

DALL·E 3 - “An old-looking map with uncharted territory, here be dragons
style”

Key idea: Innovation as novel recombination

38

(Schumpeter, 1939)

“[We may say] that innovation
combines factors in a new way,
or that it consists in carrying out
new combinations.”

Key idea: Innovation as novel recombination

39

(Schumpeter, 1939)

(Uzzi et al, 2013)

“[We may say] that innovation
combines factors in a new way,
or that it consists in carrying out
new combinations.”

“… how scientists search for
ideas is premised in part on the
idea that teams can span
scientific specialties, effectively
combining knowledge that
prompts scientific
breakthroughs.”

Software innovation as novel recombination of software libraries

41

Lots of combinations:
• (twisted, bottle)
• (turtle, nose)
• (black, pandas)
• (fuzzywuzzy, pillow)
• …

C(n,2) unique pairs of packages.

Some of these may be highly innovative
because they are atypical.

Software innovation as novel recombination of software libraries

42

Lots of combinations:
• (twisted, bottle)
• (turtle, nose)
• (black, pandas)
• (fuzzywuzzy, pillow)
• …

C(n,2) unique pairs of packages.

Dark chocolate + apple strudel is
arguably innovative because it is atypical.

Key idea from network science: Comparison to null (random) model

43

Observed reality:

A B C

i j k

Projects:

Libraries:

Project A adds a dependency on package j.
New combinations are formed, e.g., (i, j).

How atypical is (i, j)?

Key idea from network science: Comparison to null (random) model

44

Counterfactual:

Projects:

Libraries:

Preserve:
• all the projects
• all the libraries
• the distribution of imports per project
• the distribution of imports per library

i j k

A B C

?

Key idea from network science: Comparison to null (random) model

45

Counterfactual
:Projects:

Libraries:

Preserve:
• all the projects
• all the libraries
• the distribution of imports per project
• the distribution of imports per library

But randomly rewire the network.

i j k

A B C

Key idea from network science: Comparison to null (random) model

46

Counterfactual
:Projects:

Libraries:

Preserve:
• all the projects
• all the libraries
• the distribution of imports per project
• the distribution of imports per library

But randomly rewire the network.

And repeat many times.i j k

A B C

This z-score estimates if two packages are used together more, less,
or about as much as could be expected by chance.

47

Observed number of times packages
𝑖 and 𝑗 appeared together until year 𝑡.

A B

i j k

C

i j k

A B C

Average (i.e., expected) number of times packages
𝑖 and 𝑗 appeared together over N simulations.

i j k

A B CA B

i j k

C

This z-score estimates if two packages are used together more, less,
or about as much as could be expected by chance.

48

Observed number of times packages
𝑖 and 𝑗 appeared together until year 𝑡.

Average (i.e., expected) number of times packages
𝑖 and 𝑗 appeared together over N simulations.

low high ⇒ atypical combination

Project-level aggregation is the average of pairwise atypicality
z-scores

On average, projects are quite conventional.

49

More conventional
(typical)

More unconventional
(atypical)

Sanity checking

No ground truth on
atypical package
combinations, but at
least the typical
combinations should
be meaningful!

51

Fine print: Starting data consists of all Python projects in World of Code with an official GitHub
release (75,388 projects and 7,728 packages total). The size of each node represents the
number of projects that imported the package by 2019. Colors represent Louvain communities.
Only top 0.006% of edges with the highest z-score shown, and only the largest connected
component.

Software innovation as novel recombination of software libraries

52

Combining software libraries that are not often used
together is like using unusual ingredients in your
cooking.

• People may be impressed by your culinary
creativity.

• Serving unusual dishes can be risky if the
chefs are unable to perfect the recipes and
the customers are unwilling to try new
things.

Software innovation as novel recombination of software libraries

53

Combining software libraries that are not often used
together is like using unusual ingredients in your
cooking.

• Hyp: Projects that use more atypical
combinations of libraries tend to be
more popular.

• Hyp: More innovative projects tend to
be less sustainable in the long term.

Atypical (novel) projects tend to have more stars.

54

Years after project creationEstimated coefficient for atypicality z-scoreEstimated coefficient for atypicality z-score

num_stars = … + β x atypicality + …

Atypical (novel) projects tend to have smaller teams (and higher
probability of becoming abandoned).

55

Years after project creationEstimated coefficient for atypicality z-scoreEstimated coefficient for atypicality z-score

num_stars = … + β x atypicality + …

num_developers = … + β x atypicality + …

Tension between innovation and open source sustainability?

56

• Creative expression is a main driver of contributing to open source
• Innovation seems to be rewarded with increased popularity

The “grunt work”
of maintaining
existing systems

Incentive to create
ever-new things

Will it become increasingly harder to ensure that sufficient maintenance attention
(developers, funding, etc) is being allocated to the projects that need it the
most?

Now, how does innovation emerge?

57

Once upon a time, a PhD student at Harvard University was writing
their dissertation …

https://sociology.stanford.edu/people/mark-granov
etter

Weak ties are more
effective in job
searches because
they act as bridges.

The majority of people
found their jobs through
acquaintances (weak ties)
rather than close friends or
family (strong ties).

Do OSS developers also find their new ideas through weak ties?

Do OSS developers also find their new ideas through weak ties?

https://github.com/opengeoscience/geonotebook

Do OSS developers also find their new ideas through weak ties?

Anecdotally, yes

Do OSS developers also find their new ideas through weak ties?

Amazingly, statistically also yes!

People interact with artifacts and with each other. This creates ties.

Hypothesis 1: The bigger developers’ networks are, the better
informed they are, and the more innovative their projects are.

Measure: Out-degree centrality

Hypothesis 2: The greater the informational diversity of developers’
networks, the more innovative their projects are.

vs.

Measure: First, we generate Node2Vec embeddings for each project

Measure: First, we generate Node2Vec embeddings for each project

Measure: First, we generate Node2Vec embeddings for each project

Measure: First, we generate Node2Vec embeddings for each project

Measure: Then, we compute the average pairwise distance (inverse
cosine similarity) between a focal project’s direct neighbors

From interactions to ties of varying strength

Commits to the codebase
(relatively deep understanding of the codebase)

From interactions to ties of varying strength

Issue reports
(some understanding of the project)

From interactions to ties of varying strength

Stars
(awareness of the project)

Many interactions are possible, these were just three examples.

CommitsIssuesStars

Weaker ties Stronger ties

In strongly-tied social networks, triads are unlikely.

There is ~an order of magnitude (10×) difference in transitivity values
between each pair of networks.

Transitivity = 3 ∗ Ntriangles /
Ntriads

Commits >> Issues >> Stars

Now what?

CommitsIssuesStars

Information diversity index x3?Out-degree centrality x 3?

The first two PCs cumulatively explain over 80% of the variance.

PC1: Average volume of information available /
Average diversity of the knowledge space (hyp 2)

The first two PCs cumulatively explain over 80% of the variance.

PC2: Where the connectivity / diversity comes from
(The strength of weak ties)

Hypothesis 3: The more the informational diversity can be attributed
to weak ties, the more innovative the projects are.

PC2: Where the connectivity / diversity comes from
(The strength of weak ties)

Finally, the novelty regression:

● Hypothesis 1 (greater connectivity):
weak/inconsistent effects

● Hypothesis 2 (greater info diversity):
small but clear effects (25—75
percentile: 4% change in the
distribution)

● Hypothesis 3 (strength of weak ties):
clear effects, comparable size

Exposure to diverse ideas through weak ties predicts novel
combinations of packages.

● Lurking on the GitHub platform seems to have
quantifiable benefits. Redesign the Trending page?

● Automated project recommendation tools may be
counterproductive?

● Well-informed but not necessarily highly active
developers may also be experts at their craft?

● How to track and give credit to ideas?

● Surface-level vs deep-level diversity?

● AI-generated code: novel or regression to the mean?

“Ecosystem-level determinants of sustained activity in
open-source projects: A case study of the PyPI ecosystem”

Valiev et al, FSE 2018

86

87

Note: top factors are
all are project-level

88

But projects are often part of larger ecosystems

89

Transitive downstream dependencies are …….…

• Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A
Case Study of the PyPI Ecosystem. Valiev, M., Vasilescu, B., and Herbsleb, J.
ESEC/FSE 2018

70K PyPI packages10 maintainers

90

Transitive downstream dependencies are harmful

• Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A
Case Study of the PyPI Ecosystem. Valiev, M., Vasilescu, B., and Herbsleb, J.
ESEC/FSE 2018

Survival models
Early stage: -12% survival
Long term: -27% survival

Interviews:
• less likely to fix
• just as likely to complain

70K PyPI packages10 maintainers

91

Commercial involvement is ………..

• Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A
Case Study of the PyPI Ecosystem. Valiev, M., Vasilescu, B., and Herbsleb, J.
ESEC/FSE 2018

70K PyPI packages10 maintainers

92

Commercial involvement is harmful

• Ecosystem-Level Determinants of Sustained Activity in Open-Source Projects: A
Case Study of the PyPI Ecosystem. Valiev, M., Vasilescu, B., and Herbsleb, J.
ESEC/FSE 2018

70K PyPI packages10 maintainers

Survival models
Early stage: -51% survival
Long term: -15% survival

Interviews:
• more resources
• but can withdraw anytime

93

Take away: Network effects!

“Mining Email Social Networks”
Bird et al, MSR 2006

94

Email social networks are scale free

95

Out degree is an indication of status, as it indicates the number of different
people who replied to the ego’s messages.

“Latent Social Structure in Open Source Projects”
Bird et al, FSE 2008

96

Do OSS projects have some latent structure?

97

Hypothesis 1 – Subcommunities of
participants will form in the email
social networks of large open source
projects and the levels of modularity
will be statistically significant.

Are there dynamic, self-organizing subgroups that spontaneously form and evolve?

“Product” – development activity, function interfaces, APIs, bug fixes, feature
implementation, etc.

“Process” – policy decisions, high-level architectural changes, release plans,
licensing issues, and admission of newcomers.

Hypothesis 2 – Social networks constructed from product-related discussions will
be more modular than those relating to non-product related discussions or all
discussions.

Two types of discussions on the development mailing lists

98

The subcommunities should be related to the software engineering
activities in a meaningful way.

99

Hypothesis 3 – Pairs of developers within the same subcommunity will have more
files in common than pairs of developers from different subcommunities.

Hypothesis 4 – The average directory distance between files committed to by
developers in the same subcommunity will be less than similar sized groups of
developers drawn different subcommunities.

Mining the developer mailing list archives and source code
repositories for a set of popular OSS projects.

100

Finding community structure
“To find and quantify the latent community structure that exists in the OSS
networks, we have created a variant of the Newman algorithm.”

101

Finding community structure
“To find and quantify the latent community structure that exists in the OSS
networks, we have created a variant of the Newman algorithm.”

102

Finding community structure
“To find and quantify the latent community structure that exists in the OSS
networks, we have created a variant of the Newman algorithm.”

103

Finding community structure
“To find and quantify the latent community structure that exists in the OSS
networks, we have created a variant of the Newman algorithm.”

104

Finding community structure
“To find and quantify the latent community structure that exists in the OSS
networks, we have created a variant of the Newman algorithm.”

105

Finding community structure
“Girvan and Newman’s original algorithm [...] doesn’t handle networks with
weighted edges. Our social networks contain weighted edges, representing the
number of emails exchanged between two participants in each time period. A high
number of messages between a pair of participants should increase their
likelihood of being in the same group.

[...] we modified our social networks by introducing one edge between each pair of
nodes per email sent between them (i.e. creating a multi-edge network) and
modified Newman’s algorithm above to handle multi-edge networks.”

106

Community structure exists

107

108

The community structure of Perl from April to June 2007

The distribution of modularity values for 100,000 random graphs
with the same degree distribution as the observed network.

109

Grouping into subcommunities is much stronger for discussions
directly related to the source code.

110

111

“From developer networks to verified communities: A
fine-grained approach” – Joblin et al, ICSE 2015

Developer activity (a) recorded in a version control system at the
granularity of functions is abstracted as a two-mode network (b)

112(Joblin & Apel, TOSEM 2022)

https://dl.acm.org/doi/pdf/10.1145/3504003

File-based vs function-based community detection

113

“Validity of Network Analyses in Open Source
Projects” – Nia et al, MSR 2010

114

OSS communication and coordination networks
“One can derive social networks from the online mailing list archives.

The nodes are the people sending messages on the list.

If a person A replies to a message from another person B, then there is an edge
connecting the node representing A to that representing B.”

115

Incorrect information flow due to temporal aggregation
How much temporal data aggregation can be tolerated before SNA results
become unreliable?

116

Information flow in the presence of inadequate or missing data

117

“Typically, social networks are derived
from mailing list archives, using the
‘reply-to’ field in messages.

[...] If B read’s a message posted by A,
but does not reply, then there is
information flowing from A to B, but
there is no way for us to know that.”

To what extent does missing data
influence SNA metrics?

“We find that while transitive
faults can be as frequent as
50%, their frequency is highly
dependent on the time interval
of aggregation, and that even
when very frequent, they do not
change results from SNA
analysis critically.”

It doesn’t matter?

118

Summary Tons of data and research
opportunities in OSS, join us!

119

… to be continued

120

“Classifying developers into core and peripheral: An
empirical study on count and network metrics.” –

Joblin et al, ICSE 2017

“Core” vs “peripheral”

121

Core developers
● driving the system architecture
● forming the general leadership structure
● have substantial, long-term involvement

Peripheral developers
● typically involved in bug fixes or small enhancements
● have irregular or short-term involvement

“Core” vs “peripheral”

122

Core developers
● driving the system architecture
● forming the general leadership structure
● have substantial, long-term involvement

Peripheral developers
● typically involved in bug fixes or small enhancements
● have irregular or short-term involvement

Distinction based on activity level – typically, the top 20% of contributors are
responsible for 80% of the contributions.

Core and peripheral developers in developer networks
Degree centrality – local importance

Eigenvector centrality – global importance by either connecting to many
developers or by connecting to developers that are themselves globally central

Hierarchy – core developers should have a high degree and low clustering
coefficient, placing them in the upper region of the hierarchy

Core–peripheral block model – the core–core region of the matrix is a 1-block
(i.e., completely connected), the core–peripheral regions are imperfect 1-blocks,
and the peripheral–peripheral region is a 0-block

123

Aside: The hierarchical network model
Recall the earlier scale-free property vs
clustering discussion.

Small world model – short paths,
clustering, but no hubs.

Preferential attachment – short paths,
hubs, but not enough clustering.

124(Ravasz & Barabasi, 2003)

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.67.026112

Hierarchical network: scale-free
property & high degree of clustering.

Example on the right:

● power-law degree distribution with
degree exponent γ = 2.16

● clustering coefficient C = 0.74 is
independent of network size

● hierarchical architecture

Scaling law for clustering coefficient:

Aside: The hierarchical network model

125(Ravasz & Barabasi, 2003)

C=1

k=20
C=3/19

k=84
C=3/83

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.67.026112

Aside: The hierarchical network model

126(Joblin et al, TOSEM 2023)

https://dl.acm.org/doi/pdf/10.1145/3569949

Agreement between count metrics is fair to substantial.

127

128

The linear dependence between clustering coefficient and degree
expresses the hierarchy.

Also block model:

pcore–core > pcore–periph >
pperiph–periph

Also, the network perspective always
improves the agreement with
developer perception over the simpler
count-based operationalizations.

Network-based and count-based operationalizations are mostly
consistent.

129

“Hierarchical and Hybrid Organizational Structures in
Open-source Software Projects: A Longitudinal Study”

– Joblin et al, TOSEM 2023

130

Hierarchical structure emerges in OSS projects

131

Affords both the scale-free property and the community property.

Or, rather, a hybrid organizational structure

132

Over time, shift from non-hierarchical part to hierarchical part

133

Summary Tons of data and research
opportunities in OSS, join us!

134

